I want to count the length of time a server is stopped from a dataset. I know the downtime but not the duration.
I have this df:
index a b c reboot
2018-06-25 12:51:00 NaN NaN NaN 1
2018-06-25 12:52:00 NaN NaN NaN 0
2018-06-25 12:53:00 NaN NaN NaN 0
2018-06-25 12:54:00 NaN NaN NaN 0
2018-06-25 12:55:00 NaN NaN NaN 0
2018-06-25 12:56:00 NaN NaN NaN 0
2018-06-25 12:57:00 NaN NaN NaN 0
2018-06-25 12:58:00 NaN 0.6 0.6 0
2018-06-25 12:59:00 NaN NaN 0.5 0
2018-06-25 13:00:00 NaN NaN 0.3 0
2018-06-25 13:01:00 2.55 94.879997 0.23 0
2018-06-25 13:02:00 1.17 Nan 0.13 0
2018-06-25 13:03:00 1.08 98.199997 0.10 0
2018-06-25 13:28:00 NaN NaN NaN 1
2018-06-25 13:29:00 NaN NaN NaN 0
2018-06-25 13:30:00 NaN NaN NaN 0
2018-06-25 13:31:00 NaN NaN NaN 0
2018-06-25 13:31:00 0.5 0.2 0.1 0
2018-06-25 13:32:00 NaN NaN NaN 0
2018-06-25 13:33:00 NaN NaN NaN 0
2018-06-25 13:34:00 3 0.6 0.5 0
I want to count the rows where a
, b
and c
are all NaN
and reboot == 1
, with the result in this form:
index period reboot
2018-06-25 12:51:00 7 1
2018-06-25 13:28:00 4 1
I have already tried doing it column by column without the reboot condition.
Input:
index a b c reboot
2018-06-25 12:51:00 NaN NaN NaN 1
2018-06-25 12:52:00 NaN NaN NaN 0
2018-06-25 12:53:00 NaN NaN NaN 0
2018-06-25 12:54:00 NaN NaN NaN 0
2018-06-25 12:55:00 NaN NaN NaN 0
2018-06-25 12:56:00 NaN NaN NaN 0
2018-06-25 12:57:00 NaN NaN NaN 0
2018-06-25 12:58:00 NaN NaN NaN 0
2018-06-25 12:59:00 NaN NaN NaN 0
2018-06-25 13:00:00 NaN NaN NaN 0
2018-06-25 13:01:00 2.55 94.879997 0.23 0
2018-06-25 13:02:00 1.17 Nan 0.13 0
2018-06-25 13:03:00 1.08 98.199997 0.10 0
2018-06-25 13:28:00 NaN NaN NaN 1
2018-06-25 13:29:00 NaN NaN NaN 0
2018-06-25 13:30:00 NaN NaN NaN 0
a=df.index
b=df.b.values
idx0 = np.flatnonzero(np.r_[True, np.diff(np.isnan(b))!=0,True])
count = np.diff(idx0)
idx = idx0[:-1]
valid_mask = (count>=step) & np.isnan(b[idx])
out_idx = idx[valid_mask]
out_num = a[out_idx]
out_count = count[valid_mask]
outb = zip(out_num, out_count)
periodb=list(outb)
Result :
'[(Timestamp('2018-06-25 12:51:00'), 10),
(Timestamp('2018-06-25 13:28:00'), 3),'