This doesn't compile:
class MyClass[+A] {
def myMethod(a: A): A = a
}
//error: covariant type A occurs in contravariant position in type A of value a
Alright, fair enough. But this does compile:
class MyClass[+A]
implicit class MyImplicitClass[A](mc: MyClass[A]) {
def myMethod(a: A): A = a
}
Which lets us circumvent whatever problems the variance checks are giving us:
class MyClass[+A] {
def myMethod[B >: A](b: B): B = b //B >: A => B
}
implicit class MyImplicitClass[A](mc: MyClass[A]) {
def myExtensionMethod(a: A): A = mc.myMethod(a) //A => A!!
}
val foo = new MyClass[String]
//foo: MyClass[String] = MyClass@4c273e6c
foo.myExtensionMethod("Welp.")
//res0: String = Welp.
foo.myExtensionMethod(new Object())
//error: type mismatch
This feels like cheating. Should it be avoided? Or is there some legitimate reason why the compiler lets it slide?
Update:
Consider this for example:
class CovariantSet[+A] {
private def contains_[B >: A](b: B): Boolean = ???
}
object CovariantSet {
implicit class ImpCovSet[A](cs: CovariantSet[A]) {
def contains(a: A): Boolean = cs.contains_(a)
}
}
It certainly appears we've managed to achieve the impossible: a covariant "set" that still satisfies A => Boolean
. But if this is impossible, shouldn't the compiler disallow it?