I have a python script that I use to analyze data. I rely on number crunching packages like numpy and others to work with my data. However, the packages constantly evolve and some functions depreciate, etc. This forces me to go through the script several times per year to fix errors and make it work again.
One of the solutions is to keep an older version of numpy. However, there are other packages that require a new version of numpy.
So the question I have is: Is there a way to 1) keep multiple versions of a package installed or 2) have a local copy the package located in the directory of my script so I am in control what I am importing. For example, I can have my own package where I will have all the different packages and versions I need.
Later, I can simply import libraries I want
from my_package.numpy_1_15 as np115
from my_package.numpy_1_16_4 as np1164
and later in my code, I can decide which function to use from which numpy version. For example:
index = np115.argwhere(x == 0)
This is my vision of the solution to my problem where I want to keep using old functions from previous versions of numpy (or other libraries). In addition, in this way, I can always have all the libraries needed with me in my script directory. So, if I need to run the script on a different machine I don't need to spend hours figuring out if everything is compatible.
Here are possible proposed solutions and why they do not solve my problem.
- Virtual Environments in Python or Anaconda.
There are a bunch of introductions (for example) available that explain how to use them. However, virtual environments require maintenance and initial setup. Imagine, if I can just have a python code that performs well a specific computational task independent on what year it is and what packages are installed on any machine. The code can be shared among different research groups and will always work.
- python create standalone executable linux
I can create standalone executable (example). However, it will be compiled and cannot be dynamically changed the really nice feature of Python