I attempted this SPOJ problem.
Problem:
AMR10J - Mixing Chemicals
There are N bottles each having a different chemical. For each chemical i, you have determined C[i] which means that mixing chemicals i and C[i] causes an explosion. You have K distinct boxes. In how many ways can you divide the N chemicals into those boxes such that no two chemicals in the same box can cause an explosion together?
INPUT
The first line of input is the number of test cases T. T test cases follow each containing 2 lines. The first line of each test case contains 2 integers N and K. The second line of each test case contains N integers, the ith integer denoting the value C[i]. The chemicals are numbered from 0 to N-1.
OUTPUT
For each testcase, output the number of ways modulo 1,000,000,007.
CONSTRAINTS
T <= 50
2 <= N <= 100
2 <= K <= 1000
0 <= C[i] < N
For all i, i != C[i]
SAMPLE INPUT
3
3 3
1 2 0
4 3
1 2 0 0
3 2
1 2 0
SAMPLE OUTPUT
6
12
0
EXPLANATION In the first test case, we cannot mix any 2 chemicals. Hence, each of the 3 boxes must contain 1 chemical, which leads to 6 ways in total. In the third test case, we cannot put the 3 chemicals in the 2 boxes satisfying all the 3 conditions.
The summary of the problem, given a set of chemicals and a set of boxes, count how many possible ways to place these chemicals in boxes such that no chemicals will explode. At first I used brute force method to solve the problem, I recursively place chemicals in boxes and count valid configurations, I got TLE at my first attempt.
Later I learned that the problem can be solved with graph colouring. I can represent chemicals as vertexes and there'a an edge between chemicals if they cannot be placed each other. And the set of boxes can be used as vertex colours, all I need to do was to count how many different valid colourings of the graph. I applyed this concept to solve the problem unfortunately I got TLE again. I don't know how to improve my code, I need help.
code:
#include <bits/stdc++.h>
#define MAXN 100
using namespace std;
const int mod = (int) 1e9 + 7;
int n;
int k;
int ways;
void greedy_coloring(vector<int> adj[], int color[])
{
int u = 0;
for (; u < n; ++u)
if (color[u] == -1)//found first uncolored vertex
break;
if (u == n)//no uncolored vertexex means all vertexes are colored
{
ways = (ways + 1) % mod;
return;
}
bool available[k];
memset(available, true, sizeof(available));
for (int v : adj[u])
if (color[v] != -1)//if the adjacent vertex colored, make its color unavailable
available[color[v]] = false;
for (int c = 0; c < k; ++c)
if (available[c])
{
color[u] = c;
greedy_coloring(adj, color);
color[u] = -1;//don't forgot to reset the color
}
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int T;
cin >> T;
while (T--)
{
cin >> n >> k;
vector<int> adj[n];
int c[n];
for (int i = 0; i < n; ++i)
{
cin >> c[i];
adj[i].push_back(c[i]);
adj[c[i]].push_back(i);
}
ways = 0;
int color[n];
memset(color, -1, sizeof(color));
greedy_coloring(adj, color);
cout << ways << "\n";
}
return 0;
}