I am working on the data where I am trying to see the association between two variables and I used Chi-Square analysis in Scipy package in Python.
Here is the crosstab result of the two variables:
pd.crosstab(data['loan_default'],data['id_proofs'])
Result:
id_proofs 2 3 4 5
loan_default
0 167035 15232 273 3
1 46354 4202 54 1
If I apply the Chi-Square on the same data, I see an error saying ValueError: The internally computed table of expected frequencies has a zero element at (0,).
Code:
from scipy.stats import chi2_contingency
stat,p,dof,expec = chi2_contingency(data['loan_default'],data['id_proofs'])
print(stat,p,dof,expec)
Error Report:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-154-63c6f49aec48> in <module>()
1 from scipy.stats import chi2_contingency
----> 2 stat,p,dof,expec = chi2_contingency(data['loan_default'],data['id_proofs'])
3 print(stat,p,dof,expec)
~/anaconda3/lib/python3.6/site-packages/scipy/stats/contingency.py in chi2_contingency(observed, correction, lambda_)
251 zeropos = list(zip(*np.where(expected == 0)))[0]
252 raise ValueError("The internally computed table of expected "
--> 253 "frequencies has a zero element at %s." % (zeropos,))
254
255 # The degrees of freedom
ValueError: The internally computed table of expected frequencies has a zero element at (0,).
What could be the reasons for the issue? How can I overcome this?