You might try select()
and union()
. below code first lists the basic logic and then use reduce()
function to eliminate all intermediate dataframes:
from pyspark.sql import functions as F
from functools import reduce
df = spark.createDataFrame([
(1,2,3,4,5,6,7,8)
, (11,12,13,14,15,16,17,18)
, (21,22,23,24,25,26,27,28)
],
[ 'cola', 'colb'
, 'colc_1', 'cold_1', 'cole_1'
, 'colc_2', 'cold_2', 'cole_2'
])
# create df1 with all columns for new_col = '_1'
df1 = df.select('cola', 'colb', F.lit('_1'), 'colc_1', 'cold_1', 'cole_1')
df1.show()
#+----+----+---+------+------+------+
#|cola|colb| _1|colc_1|cold_1|cole_1|
#+----+----+---+------+------+------+
#| 1| 2| _1| 3| 4| 5|
#| 11| 12| _1| 13| 14| 15|
#| 21| 22| _1| 23| 24| 25|
#+----+----+---+------+------+------+
# do the similar for '_2'
df2 = df.select('cola', 'colb', F.lit('_2'), *["col{}_2".format(i) for i in list("cde")])
#+----+----+---+------+------+------+
#|cola|colb| _2|colc_2|cold_2|cole_2|
#+----+----+---+------+------+------+
#| 1| 2| _2| 6| 7| 8|
#| 11| 12| _2| 16| 17| 18|
#| 21| 22| _2| 26| 27| 28|
#+----+----+---+------+------+------+
# then union these two dataframe and adjust the final column names
df_new = df1.union(df2).toDF('cola', 'colb', 'new_col', 'colc', 'cold', 'cole')
df_new.show()
#+----+----+-------+----+----+----+
#|cola|colb|new_col|colc|cold|cole|
#+----+----+-------+----+----+----+
#| 1| 2| _1| 3| 4| 5|
#| 11| 12| _1| 13| 14| 15|
#| 21| 22| _1| 23| 24| 25|
#| 1| 2| _2| 6| 7| 8|
#| 11| 12| _2| 16| 17| 18|
#| 21| 22| _2| 26| 27| 28|
#+----+----+-------+----+----+----+
Next we can use reduce()
function to handle all groups of columns without the above temporary df1, df2 etc:
# setup the list of columns to be normalized
normalize_cols = ["col{}".format(c) for c in list("cde")]
# ["colc", "cold", "cole"]
# change N to 16 to cover new_col from '_1' to '_15'
N = 3
# use reduce to handle all groups
df_new = reduce(
lambda d1,d2: d1.union(d2)
, [ df.select('cola', 'colb', F.lit('_{}'.format(i)), *["{}_{}".format(c,i) for c in normalize_cols]) for i in range(1,N) ]
).toDF('cola', 'colb', 'new_col', *normalize_cols)
Another way is using F.array()
and F.explode()
(use reduce() for all _N
):
df.withColumn('d1', F.array(F.lit('_1'), *['col{}_1'.format(c) for c in list("cde")])) \
.withColumn('d2', F.array(F.lit('_2'), *['col{}_2'.format(c) for c in list("cde")])) \
.withColumn('h', F.array('d1', 'd2')) \
.withColumn('h1', F.explode('h')) \
.select('cola', 'colb', *[ F.col('h1')[i] for i in range(4)]) \
.toDF('cola', 'colb', 'new_col', 'colc', 'cold', 'cole') \
.show()
Update Per comment:
To denormalize the dataframe, I am using F.array()
and then F.collect_list
to group the columns into list of arrays and then refer the values from the groupby()
result:
Using a Window function to set the order of the elements in collect_list:reference link
N = 3
normalize_cols = ["col{}".format(c) for c in list("cde")]
# win spec so that element in collect_list are sorted based on 'new_col'
win = Window.partitionBy('cola', 'colb').orderBy('new_col')
df_new.withColumn('cols', F.array(normalize_cols)) \
.withColumn('clist', F.collect_list('cols').over(win)) \
.groupby('cola', 'colb').agg(F.last('clist').alias('clist1')) \
.select('cola', 'colb', *[ F.col('clist1')[i].alias('c{}'.format(i)) for i in range(N-1)]) \
.select('cola', 'colb', *[ F.col('c{}'.format(i))[j].alias('{}_{}'.format(normalize_cols[j],i+1)) for i in range(N-1) for j in range(len(normalize_cols)) ]) \
.show()
# +----+----+------+------+------+------+------+------+
# |cola|colb|colc_1|cold_1|cole_1|colc_2|cold_2|cole_2|
# +----+----+------+------+------+------+------+------+
# | 11| 12| 13| 14| 15| 16| 17| 18|
# | 21| 22| 23| 24| 25| 26| 27| 28|
# | 1| 2| 3| 4| 5| 6| 7| 8|
# +----+----+------+------+------+------+------+------+
Some Explanations:
F.last()
in groupby.agg() returns the full collect_list from the Window function under the same partitionBy(groupby)
- the 1st
select()
convert collect_list() into c0, c1
- the 2nd
select()
convert c0 to colc_1, cold_1, cole_1 and c1 to colc_2, cold_2, cole_2