I am constructing this ROC curve from my SVM model, but the curve came out inverted. Also, although my SVM prediction has high accuracy (~93%), my ROC curve shows that my area under the curve is just about 2.7%. Moreover, it tells me that the optimal cutoff value is infinity, which is not what I expected from my model fitting.
I have fitted my SVM model using the built-in SVM function just like in the code I showed below, and then I predicted using the function predict(). Then, I computed the prediction() and calculated the performance(), the cutoff value, and the AUC (all code shown below)
svm.fit <- svm(label ~ NDAI + SD + CORR, data = trainSet, scale = FALSE, kernel = "radial", cost = 2, probability=TRUE)
svm.pred <- predict(svm.fit, testSet, probability=TRUE)
mean(svm.pred== testSet$label)*100
prediction.svm <- prediction(attr(svm.pred, "probabilities")[,2], testSet$label)
eval.svm <- performance(prediction.svm, "acc")
roc.svm <- performance(prediction.svm, "tpr", "fpr")
#identify best values and cutoff
max_index.svm <- which.max(slot(eval.svm, "y.values")[[1]])
max.acc_svm <- (slot(eval.svm, "y.values")[[1]])[max_index.svm]
opt.cutoff_svm <- (slot(eval.svm, "x.values")[[1]])[max_index.svm][[1]]
#AUC
auc.svm <- performance(prediction.svm, "auc")
auc.svm <- unlist(slot(auc.svm, "y.values"))
auc.svm <- round(auc.svm, 4)
plot(roc.svm,colorize=TRUE)
points(0.072, 0.93, pch= 20)
legend(.6,.2, auc.svm, title = "AUC", cex = 0.8)
legend(.8,.2, round(opt.cutoff_svm,4), title = "cutoff", cex = 0.8)
I expect the output to have AUC close to 1, and a small cutoff which is close to 0.5, with a curve with AUC close to 1. Has anyone encountered a similar problem like this one? If yes, how should I fix my code?