Hello (first timer here),
I would like to estimate a "two-way" cluster-robust variance-covariance matrix in R. I am using a particular canned routine from the "multiwayvcov" library. My question relates solely to the set-up of the cluster.vcov
function in R. I have panel data of various crime outcomes. My cross-sectional unit is the "precinct" (over 40 precincts) and I observe crime in those precincts over several "months" (i.e., 24 months). I am evaluating an intervention that 'turns on' (dummy coded) for only a few months throughout the year.
I include "precinct" and "month" fixed effects (i.e., a full set of precinct and month dummies enter the model). I have only one independent variable I am assessing. I want to cluster on "both" dimensions but I am unsure how to set it up.
Do I estimate all the fixed effects with lm
first? Or, do I simply run a model regressing crime on the independent variable (excluding fixed effects), then use cluster.vcov
i.e., ~ precinct + month_year.
This seems like it would provide the wrong standard error though. Right? I hope this was clear. Sorry for any confusion. See my set up below.
library(multiwayvcov)
model <- lm(crime ~ as.factor(precinct) + as.factor(month_year) + policy, data = DATASET_full)
boot_both <- cluster.vcov(model, ~ precinct + month_year)
coeftest(model, boot_both)
### What the documentation offers as an example
### https://cran.r-project.org/web/packages/multiwayvcov/multiwayvcov.pdf
library(lmtest)
data(petersen)
m1 <- lm(y ~ x, data = petersen)
### Double cluster by firm and year using a formula
vcov_both_formula <- cluster.vcov(m1, ~ firmid + year)
coeftest(m1, vcov_both_formula)
Is is appropriate to first estimate a model that ignores the fixed effects?