I compiled the example.
https://developer.apple.com/documentation/vision/recognizing_objects_in_live_capture
It did not work correctly for me on an iPhone 7 Plus. The rectangles drawn did not cover the items detected.
I created an app of my own to investigate. The detected objects are returned as normalized bounds. However the bounds can be negative in the Y direction. Adding a correction of 0.2 brings them back into alignment.
The detection appears to be cropping a square from the center of the portrait frame to do the detection. I created a square overlay and when the object moves out of the square either to the top or bottom the detection stops. Top and bottom of the square are 0 and 1.0 in the normalised coordinate.
The test App passes the data from captureOutput
to an VNImageRequestHandler
. The code that sets up the request is also below. Any idea why the observations are sometimes negative in the Y direction? Why do I need to add an offset to bring them back into the unit square and align them with the image?
I have set the camera to 4K in my test app. Not yet tried any other settings.
func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {
guard let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else {
return
}
//let exifOrientation = exifOrientationFromDeviceOrientation()
let exifOrientation = CGImagePropertyOrientation.up
let imageRequestHandler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer, orientation: exifOrientation, options: [:])
do {
try imageRequestHandler.perform(self.requests)
} catch {
print(error)
}
}
@discardableResult
func setupVision() -> NSError? {
// Setup Vision parts
let error: NSError! = nil
guard let modelURL = Bundle.main.url(forResource: "ResistorModel", withExtension: "mlmodelc") else {
return NSError(domain: "VisionObjectRecognitionViewController", code: -1, userInfo: [NSLocalizedDescriptionKey: "Model file is missing"])
}
do {
let visionModel = try VNCoreMLModel(for: MLModel(contentsOf: modelURL))
let objectRecognition = VNCoreMLRequest(model: visionModel, completionHandler: { (request, error) in
DispatchQueue.main.async(execute: {
// perform all the UI updates on the main queue
if let results = request.results {
self.drawVisionRequestResults(results)
}
})
})
self.requests = [objectRecognition]
} catch let error as NSError {
print("Model loading went wrong: \(error)")
}
return error
}
func drawVisionRequestResults(_ results: [Any]) {
var pipCreated = false
CATransaction.begin()
CATransaction.setValue(kCFBooleanTrue, forKey: kCATransactionDisableActions)
detectionOverlay.sublayers = nil // remove all the old recognized objects
for observation in results where observation is VNRecognizedObjectObservation {
guard let objectObservation = observation as? VNRecognizedObjectObservation else {
continue
}
// Select only the label with the highest confidence.
let topLabelObservation = objectObservation.labels[0]
if topLabelObservation.identifier == "resistor" {
if (objectObservation.boundingBox.minX < 0.5) && (objectObservation.boundingBox.maxX > 0.5) && (objectObservation.boundingBox.minY < 0.3) && (objectObservation.boundingBox.maxY > 0.3) {
//print(objectObservation.boundingBox.minX)
//print(objectObservation.boundingBox.minY)
let bb = CGRect(x: objectObservation.boundingBox.minX, y:0.8 - objectObservation.boundingBox.maxY, width: objectObservation.boundingBox.width, height: objectObservation.boundingBox.height)
//let bb = CGRect(x: 0.5,y: 0.5,width: 0.5,height: 0.5)
//let objectBounds = VNImageRectForNormalizedRect(bb, 500, 500)
let objectBounds = VNImageRectForNormalizedRect(bb, Int(detectionOverlay.bounds.width), Int(detectionOverlay.bounds.width))
// print(objectBounds)
// print(objectBounds.minX)
// print(objectBounds.minY)
// print(objectBounds.width)
// print(objectBounds.height)
print(objectObservation.boundingBox)
// print(objectBounds.minX)
// print(objectBounds.minY)
// print(objectBounds.width)
// print(objectBounds.height)
let textLayer = self.createTextSubLayerInBounds(objectBounds,
identifier: topLabelObservation.identifier,
confidence: topLabelObservation.confidence)
let shapeLayer = self.createRoundedRectLayerWithBounds(objectBounds)
shapeLayer.addSublayer(textLayer)
detectionOverlay.addSublayer(shapeLayer)
if !pipCreated {
pipCreated = true
let pip = Pip(imageBuffer: self.imageBuffer!)
if self.pip {
pipView.image = pip?.uiImage
} else {
pipView.image = nil
}
}
}
}
}
CATransaction.commit()
doingStuff = false
}