We define my_perm/2
based on same_length/2
,
list_permuted/2
, dif, and mapadj/2
:
my_perm(Xs,Ys) :-
same_length(Xs,Ys),
mapadj(dif,Ys),
list_permuted(Xs,Ys).
The versatile meta-predicate mapadj/2
can be defined like this:
:- meta_predicate mapadj(2,?), list_mapadj(?,2), list_prev_mapadj(?,?,2).
mapadj(P_2,Xs) :-
list_mapadj(Xs,P_2).
list_mapadj([],_).
list_mapadj([A|As],P_2) :-
list_prev_mapadj(As,A,P_2).
list_prev_mapadj([],_,_).
list_prev_mapadj([A1|As],A0,P_2) :-
call(P_2,A0,A1),
list_prev_mapadj(As,A1,P_2).
Here comes the sample query1,2 given by the OP.
We use call_time/2
for measuring the runtime in milli-seconds T_ms
.
?- call_time(my_perm([1,1,1,1,1,2,2,3,3,4,4,5,5],[1,2,1,5,1,3,1,4,1,2,3,5,4]),T_ms).
T_ms = 0.
How long does it take us to find the first few solutions?
?- call_time(my_perm([1,2,1,5,1,3,1,4,1,2,3,5,4],Xs),T_ms).
T_ms = 0, Xs = [1,2,1,5,1,3,1,4,1,2,3,5,4]
; T_ms = 0, Xs = [1,2,1,5,1,3,1,4,1,2,3,4,5]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,2,5,3,4]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,2,4,3,5]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,2,5,4,3]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,2,4,5,3]
; T_ms = 10, Xs = [1,2,1,5,1,3,1,4,1,3,2,5,4]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,3,2,4,5]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,5,2,3,4]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,4,2,3,5]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,5,2,4,3]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,4,2,5,3]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,3,5,2,4]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,3,4,2,5]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,5,3,2,4]
; T_ms = 20, Xs = [1,2,1,5,1,3,1,4,1,4,3,2,5]
; T_ms = 30, Xs = [1,2,1,5,1,3,1,4,1,5,4,2,3]
; T_ms = 30, Xs = [1,2,1,5,1,3,1,4,1,4,5,2,3]
...
Note that T_ms
grows monotonically: it measures the time spent since it first called the given goal.
How long does it take to enumerate all solutions?
?- call_time(\+((my_perm([1,1,1,1,1,2,2,3,3,4,4,5,5],_),false)),T_ms).
T_ms = 4030.
How many solutions are there?
?- use_module(library(aggregate)),
aggregate(count,Xs,my_perm([1,2,1,5,1,3,1,4,1,2,3,5,4],Xs),N).
N = 197664.
Footnote 1: Using SICStus Prolog version 4.3.2 (x86_64-linux-glibc2.12).
Footnote 2: The answer sequences given by the Prolog processor have been adapted for the sake of readability.