I am trying to convert a JSON file into a dataframe. The dataframe I created has two columns: time
and sumOfFFT
. They both are floating point numbers. While sumOfFFT
is of type float, time
is of the type object and each row in the column is a list
with the number in it.
I tried using to_numeric
and all the digits get converted to NaN since it's a list
object. I also tried Series but that did the same. I am trying to convert the list object in every row to a string and then float but it throws an error.
a = float(str(frame.iloc[1]['time']))
print(a)
ValueError Traceback (most recent call last)
<ipython-input-75-2f41310a23f7> in <module>()
----> 1 a = float(str(frame.iloc[1]['time']))
2 print(a)
ValueError: could not convert string to float: '[0.0001041666667]'
Data format:
{
"fft": {
"time": [
[0],
[0.0001041666667],
[0.0002083333333],
[0.0003125],
],
"sumOfFFT": [2.883648107,2.769599456,2.659837554,2.560352381]
}
}
Code so far:
import json
import pandas as pd
with open('akhil_195682_170628-174745.json') as json_data:
obj = json.load(json_data)
frame = pd.DataFrame(obj['fft'], columns=['time', 'sumOfFFT'])
Output:
time sumOfFFT
0 [0] 2.883648
1 [0.0001041666667] 2.769599
2 [0.0002083333333] 2.659838
3 [0.0003125] 2.560352
I expect to convert the data into a DataFrame, and plot the two variables against each other.