I am solving a problem which states that we have a list L containing integers from 1 to N. We have to perform the following operation N−1 times:
- Choose two elements of the list, let's denote them by X and Y.
- Erase the chosen elements from L.
- Append the number X + Y + X*Y to L. At the end, L contains exactly one integer. Find this integer. As the answer may be large, we have to compute it modulo 10^9 + 7
Constraints : 1≤N≤1,000,000
Time Limit : 1 sec
I have written this code which gives the correct answer in linear time but it says time limit exceeded for this approach. Can someone provide a better optimized solution
inline ull cal(ull x, ull y){
ull ans, i, modno;
modno = 1000000007;
i = 1;
ans = (x + y);
i = (i*x) % modno;
i = (i*y) % modno;
ans = ans + i;
ans = ans % modno;
return ans;
}
int main(){
ull n;
cin>>n;
ull sum, modno;
sum = 0;
modno = 1000000007;
if(n == 1)
cout<<1<<endl;
else
{
sum = n + (n-1) + (n*(n-1));
n -= 2;
do
{
if(n <= 0)
break;
sum = cal(sum, n);
n -= 1;
}while(1);
cout<<ans<<endl;
}
return 0;
}
Final code :
ull n;
cin>>n;
if(n == 1)
cout<<1<<endl;
else
{
ull modno = 1000000007;
ull ans = 1;
ull no = n+1;
while(no >= 1)
{
ans = (ans*no);
if(ans > modno)
ans = ans%modno;
no--;
}
ans = ans - 1;
ans = ans % modno;
cout<<ans<<endl;