With solve minimize
I only get one solution, even though there are multiple optimal solutions. I have enabled printout of multiple solutions in the solver configurations. The other optimal solutions are found with solve satisfy
, along with non-optimal solutions.
Could it be that the cardinality function card()
ranks by enum value where size of two sets are equal? In other words that card(A, B) > card(B, C)
? If so, do I have to switch the representation of my vertices?
I am creating a MiniZinc program for finding the minimum vertex cover of a given graph. The graph in this example is this:
With Minimal Vertex Cover solutions being:
[{A, B, C, E}, {A, B, E, F}, {A, C, D, E}, {B, C, D, E}, {B, C, D, F}, {B, D, E, F}]
. My code only outputs {A, B, C, E}
.
Data file:
VERTEX = {A, B, C, D, E, F};
edges = [|1, 0, 1, 0, 0, 0, 0, 0, 0
|1, 1, 0, 1, 1, 0, 0, 0, 0
|0, 1, 0, 0, 0, 1, 1, 0, 0
|0, 0, 1, 1, 0, 0, 0, 1, 0
|0, 0, 0, 0, 1, 1, 0, 1, 1
|0, 0, 0, 0, 0, 0, 1, 0, 1|];
Solver program:
% Vertices in graph
enum VERTEX;
% Edges between vertices
array[VERTEX, int] of int: edges;
int: num_edges = (length(edges) div card(VERTEX));
% Set of vertices to find
var set of VERTEX: span;
% Number of vertices connected to edge resulting from span
array[1..num_edges] of var 0..num_edges: conn;
% All edges must be connected with at least one vertex from span
constraint forall(i in 1..num_edges)
(conn[i] >= 1);
% The number of connections to each edge is the number of vertices
% in span with a connection to that edge
constraint forall(i in 1..num_edges)
(conn[i] = sum([edges[vert,i]| vert in span]));
% Minimize the number of vertices in span
solve minimize card(span);