I am trying to implement a multi class dice loss function in tensorflow. Since it is multi class dice, I need to convert the probabilities of each class into its one-hot form. For example, if my network outputs these probabilities:
[0.2, 0.6, 0.1, 0.1] (assuming 4 classes)
I need to convert this into:
[0 1 0 0]
This can be done by using tf.argmax followed by tf.one_hot
def generalized_dice_loss(labels, logits):
#labels shape [batch_size,128,128,64,1] dtype=float32
#logits shape [batch_size,128,128,64,7] dtype=float32
labels=tf.cast(labels,tf.int32)
smooth = tf.constant(1e-17)
shape = tf.TensorShape(logits.shape).as_list()
depth = int(shape[-1])
labels = tf.one_hot(labels, depth, dtype=tf.int32,axis=4)
labels = tf.squeeze(labels, axis=5)
logits = tf.argmax(logits,axis=4)
logits = tf.one_hot(logits, depth, dtype=tf.int32,axis=4)
numerator = tf.reduce_sum(labels * logits, axis=[1, 2, 3])
denominator = tf.reduce_sum(labels + logits, axis=[1, 2, 3])
numerator=tf.cast(numerator,tf.float32)
denominator=tf.cast(denominator,tf.float32)
loss = tf.reduce_mean(1.0 - 2.0*(numerator + smooth)/(denominator + smooth))
return loss
Problem is, tf.argmax is not differentiable, It will throw an error:
ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.
How to solve this problem? Can we do the same thing without using tf.argmax?