The point of this assignment is to understand list comprehensions.
Implementing Goldbach's conjecture for some natural number (otherwise the behavior does not matter) using several pre-defined functions and under the following restrictions:
- no auxiliary functions
- no use of where or let
- only one defining equation on the left-hand side and the right-hand side must be a list comprehension
- the order of the pairs in the resulting list is irrelevant
- using functions from Prelude is allowed
-- This part is the "library"
dm :: Int -> [ Int ] -> [ Int ]
dm x xs = [ y | y <- xs , y `mod ` x /= 0]
da :: [ Int ] -> [ Int ]
da ( x : xs ) = x : da ( dm x xs )
primes :: [ Int ]
primes = da [2 ..]
-- Here is my code
goldbach :: Int -> [(Int,Int)]
-- This is my attempt 1
goldbach n = [(a, b) | n = a + b, a <- primes, b <- primes, a < n, b < n]
-- This is my attempt 2
goldbach n = [(a, b) | n = a + b, a <- takeWhile (<n) primes, b <- takeWhile (<n) primes]
Expected result: a list of all pairs summing up to the specified integer. But GHC complains that in the comprehension, n is not known. My gut tells me I need some Prelude function(s) to achieve what I need, but which one?
Update
parse error on input ‘=’
Perhaps you need a 'let' in a 'do' block?
e.g. 'let n = 5' instead of 'n = 5'