I have developed a 3 layer deep autoencoder model for the mnist dataset as I am just practicing on this toy dataset as I am beginner in this fine-tuning paradigm
Following is the code
from keras import layers
from keras.layers import Input, Dense
from keras.models import Model,Sequential
from keras.datasets import mnist
import numpy as np
# Deep Autoencoder
# this is the size of our encoded representations
encoding_dim = 32 # 32 floats -> compression factor 24.5, assuming the input is 784 floats
# this is our input placeholder; 784 = 28 x 28
input_img = Input(shape=(784, ))
my_epochs = 100
# "encoded" is the encoded representation of the inputs
encoded = Dense(encoding_dim * 4, activation='relu')(input_img)
encoded = Dense(encoding_dim * 2, activation='relu')(encoded)
encoded = Dense(encoding_dim, activation='relu')(encoded)
# "decoded" is the lossy reconstruction of the input
decoded = Dense(encoding_dim * 2, activation='relu')(encoded)
decoded = Dense(encoding_dim * 4, activation='relu')(decoded)
decoded = Dense(784, activation='sigmoid')(decoded)
# this model maps an input to its reconstruction
autoencoder = Model(input_img, decoded)
# Separate Encoder model
# this model maps an input to its encoded representation
encoder = Model(input_img, encoded)
# Separate Decoder model
# create a placeholder for an encoded (32-dimensional) input
encoded_input = Input(shape=(encoding_dim, ))
# retrieve the layers of the autoencoder model
decoder_layer1 = autoencoder.layers[-3]
decoder_layer2 = autoencoder.layers[-2]
decoder_layer3 = autoencoder.layers[-1]
# create the decoder model
decoder = Model(encoded_input, decoder_layer3(decoder_layer2(decoder_layer1(encoded_input))))
# Train to reconstruct MNIST digits
# configure model to use a per-pixel binary crossentropy loss, and the Adadelta optimizer
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
# prepare input data
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# normalize all values between 0 and 1 and flatten the 28x28 images into vectors of size 784
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
# Train autoencoder for 50 epochs
autoencoder.fit(x_train, x_train, epochs=my_epochs, batch_size=256, shuffle=True, validation_data=(x_test, x_test),
verbose=2)
# after 100 epochs the autoencoder seems to reach a stable train/test lost value
# Visualize the reconstructed encoded representations
# encode and decode some digits
# note that we take them from the *test* set
encodedTrainImages=encoder.predict(x_train)
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
# From here I want to fine tune just the encoder model
model=Sequential()
model=Sequential()
for layer in encoder.layers:
model.add(layer)
model.add(layers.Flatten())
model.add(layers.Dense(20, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(10, activation='softmax'))
Following is my encoder model which I want to fine-tune.
encoder.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 784) 0
_________________________________________________________________
dense_1 (Dense) (None, 128) 100480
_________________________________________________________________
dense_2 (Dense) (None, 64) 8256
_________________________________________________________________
dense_3 (Dense) (None, 32) 2080
=================================================================
Total params: 110,816
Trainable params: 110,816
Non-trainable params: 0
_________________________________________________________________
Problem:1
After building the autoencoder model I want to just use the encoder model and fine tune it for classification task in mnist dataset but I am getting errors.
Error:
Traceback (most recent call last):
File "C:\Users\samer\Anaconda3\envs\tensorflow-gpu\lib\site-packages\IPython\core\interactiveshell.py", line 3267, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-15-528c079e5325>", line 3, in <module>
model.add(layers.Flatten())
File "C:\Users\samer\Anaconda3\envs\tensorflow-gpu\lib\site-packages\keras\engine\sequential.py", line 181, in add
output_tensor = layer(self.outputs[0])
File "C:\Users\samer\Anaconda3\envs\tensorflow-gpu\lib\site-packages\keras\engine\base_layer.py", line 414, in __call__
self.assert_input_compatibility(inputs)
File "C:\Users\samer\Anaconda3\envs\tensorflow-gpu\lib\site-packages\keras\engine\base_layer.py", line 327, in assert_input_compatibility
str(K.ndim(x)))
ValueError: Input 0 is incompatible with layer flatten_4: expected min_ndim=3, found ndim=2
Problem 2:
Similarly I would later use pre-trained model where each autoencoder would be trained in a greedy manner and then the final model would be fine tuned. Can somebody just guide me how to proceed further in my these two tasks.
regards