I have a dataset which uses Latitudes and Longitudes: I want to create a Cross Feature for Euclidean Distance:
origin_lat, origin_lon,dest_lat, dest_lon
41.857183858,-87.620334624,42.001571027,-87.695012589
I already read each as 4 different tf.float
Tensors (tf.feature_column.numeric_column)
This is a similar cross column I create:
# Creating a boolean flag
capital_indicator = features['capital_gain'] > features['capital_loss']
features['capital_indicator'] = tf.cast(capital_indicator, dtype=tf.int32)
I would like to have something like this:
euclid_distance = distance((['origin_lat', 'origin_lon']), (['dest_lat', 'dest_lon']))