I am using numpy to generate eigenvectors and eigenvalues. A problem arises when forming tuples of them, and attempting to sort the pairs. I get the error message: TypeError: only length-1 arrays can be converted to python scalars.
Here is the code:
import numpy as np
import pandas as pd
df=\
pd.read_csv(r'C:\Users\james\Desktop\Documents\Downloads\bpAFTPosWords.csv'
#df.head()
#Drop columns whose sum is less than 30
df.sum(axis = 0, skipna = True)
df_to_save = df.loc[:, (df.sum(axis=0, skipna=True) >= 30)]
#df_to_save.head()
#Standardize the data
from sklearn.preprocessing import StandardScaler
X_std = StandardScaler().fit_transform(df_to_save)
#Compute correlations
cor_mat1 = np.corrcoef(X_std.T)
#Produce PCA eigenvector and eigenvalues
eig_vals, eig_vecs = np.linalg.eig(cor_mat1)
#print('Eigenvectors \n%s' %eig_vecs)
#print('\nEigenvalues \n%s' %eig_vals)
# Make a list of (eigenvalue, eigenvector) tuples
eig_pairs = np.array(list(zip(eig_vals,eig_vecs)))
eig_pairs = eig_pairs[
eig_pairs[:,0].argsort()[::-1]]
# Visually confirm that the list is correctly sorted by decreasing
print('Eigenvalues in descending order:')
for i in eig_pairs:
print(i[0])
#Here is the context for the error:
TypeError Traceback (most recent call last)
<ipython-input-7-2342d13b7710> in <module>
21
22 # Make a list of (eigenvalue, eigenvector) tuples
---> 23 eig_pairs = np.array(list(zip(eig_vals,eig_vecs)))
24
25 eig_pairs = eig_pairs[
TypeError: only length-1 arrays can be converted to Python scalars
In case my data would aid your problem-solving, here is the .csv file:
https://docs.google.com/spreadsheets/d/1GRPbfHHB1mbO5Eo26B6crTl7FN1cNnLoU-oRQCEu7v8/edit?usp=sharing
A second question I have is how output to a file the loadings of each row on each eigenvector. Have not yet been able to figure this out from googling and documentation.
Thanks for your help!