The total number of zeros in n!
is given by sequence A027869 in the On-line Encyclopedia of Integer Sequences. There really seems to be no way to compute the total number of zeros in n!
short of computing n!
and counting the number of zeros. With a big int library, this is easy enough. A simple Python example:
import math
def zeros(n): return str(math.factorial(n)).count('0')
So, for example, zeros(100)
evaluates to 30
. For larger n
you might want to skip the relatively expensive conversion to a string and get the 0-count arithmetically by repeatedly dividing by 10
.
As you have noted, it is far easier to compute the number of trailing zeros. Your code, in Python, is essentially:
def trailing_zeros(n):
count = 0
p = 5
while p <= n:
count += n//p
p *= 5
return count
As a heuristic way to estimate the total number of zeros, you can first count the number of trailing zeros, subtract that from the number of digits in n!
, subtract an additional 2 from this difference (since neither the first digit of n!
nor the final digit before the trailing zeros are candidate positions for non-trailing zeros) and guess that 1/10 of these digits will in fact be zeros. You can use Stirling's formula to estimate the number of digits in n!
:
def num_digits(n):
#uses Striling's formula to estimate the number of digits in n!
#this formula, known as, Kamenetsky's formula, gives the exact count below 5*10^7
if n == 0:
return 1
else:
return math.ceil(math.log10(2*math.pi*n)/2 + n *(math.log10(n/math.e)))
Hence:
def est_zeros(n):
#first compute the number of candidate postions for non-trailing zerpos:
internal_digits = max(0,num_digits(n) - trailing_zeros(n) - 2)
return trailing_zeros(n) + internal_digits//10
For example est_zeros(100)
evaluates to 37, which isn't very good, but then there is no reason to think that this estimation is any better than asymptotic (though proving that it is asymptotically correct would be very difficult, I don't actually know if it is). For larger numbers it seems to give reasonable results. For example zeros(10000) == 5803
and est_zeros == 5814
.