I am analyzing a dataset and want to quantify the linear regression of total dataset. The dataset has different dependent variables, but with a single independent variable.
I have tried to use the simple linear regression using stat_smooth() from ggplot2 package. This gives the individual regression line for a dataset, but what I want to do is to combine these regression lines into a single regression line that represents both these and maybe an average of more regression lines
geom_point(aes(x= DateAndTime, y= T_423), na.rm=TRUE, color="purple", shape=19, size=3)+
geom_point(aes(x= DateAndTime, y= T_422), na.rm=TRUE, color="red", shape=8, size=1)+
ggtitle("Module Temperature STP423 - Total distribution") +
xlab("Date") + ylab("Module Temperature (C)")
The data looks something like this:
Dates X1 X2
1 2014-01-04 8.0645816 7.2969667
2 2014-01-06 7.7804850 7.1507470
3 2014-01-07 8.8772607 8.6917391
4 2014-01-08 8.8943146 8.3475009
5 2014-01-10 11.6734008 10.6493480
6 2014-01-11 9.0915727 8.5793932
7 2014-01-12 9.5216658 9.4891858
8 2014-01-13 -6.2493962 -6.9360515