I have lots of images that I want to process in parallel.
By default Tensorflow can use multiple cores, here is some info on this https://stackoverflow.com/a/41233901/1179925
"Currently, this means that each thread pool will have one thread per CPU core in your machine."
By looking at htop I can see that not all cores are utilized at 100% in this default setting, so I want to set intra_op_parallelism_threads=1
and inter_op_parallelism_threads=1
and run n_cpu
models in parallel, howewer it performs even worser.
On my notebook with 8 cores:
Single core sequential processing:
Model init time: 0.77 sec
Processing time: 37.58 sec
Multi CPU default Tensorflow settings:
Model init time: 0.76 sec
Processing time: 20.16 sec
This code using multiprocessing:
Model init time: 0.78 sec
Processing time: 39.14 sec
Here is my code using multiprocessing
, I'm missing something?:
import os
import glob
import time
import argparse
from multiprocessing.pool import ThreadPool
import multiprocessing
import itertools
import tensorflow as tf
import numpy as np
from tqdm import tqdm
import cv2
MODEL_FILEPATH = './tensorflow_example/inception_v3_2016_08_28_frozen.pb'
def get_image_filepaths(dataset_dir):
if not os.path.isdir(dataset_dir):
raise Exception(dataset_dir, 'not dir!')
img_filepaths = []
extensions = ['**/*.jpg', '**/*.png', '**/*.JPG', '**/*.PNG']
for ext in extensions:
img_filepaths.extend(glob.iglob(os.path.join(dataset_dir, ext), recursive=True))
return img_filepaths
class ModelWrapper():
def __init__(self, model_filepath):
# TODO: estimate this from graph itself
# Hardcoded for inception_v3_2016_08_28_frozen.pb
self.input_node_names = ['input']
self.output_node_names = ['InceptionV3/Predictions/Reshape_1']
self.input_img_w = 299
self.input_img_h = 299
input_tensor_names = [name + ":0" for name in self.input_node_names]
output_tensor_names = [name + ":0" for name in self.output_node_names]
self.graph = self.load_graph(model_filepath)
self.inputs = []
for input_tensor_name in input_tensor_names:
self.inputs.append(self.graph.get_tensor_by_name(input_tensor_name))
self.outputs = []
for output_tensor_name in output_tensor_names:
self.outputs.append(self.graph.get_tensor_by_name(output_tensor_name))
config_proto = tf.ConfigProto(device_count={'GPU': 0},
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
self.sess = tf.Session(graph=self.graph, config=config_proto)
def load_graph(self, model_filepath):
# Expects frozen graph in .pb format
with tf.gfile.GFile(model_filepath, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name="")
return graph
def predict(self, img):
h, w, c = img.shape
if h != self.input_img_h or w != self.input_img_w:
img = cv2.resize(img, (self.input_img_w, self.input_img_h))
batch = img[np.newaxis, ...]
feed_dict = {self.inputs[0] : batch}
outputs = self.sess.run(self.outputs, feed_dict=feed_dict) # (1, 1001)
return outputs
def process_single_file(args):
model, img_filepath = args
img = cv2.imread(img_filepath)
output = model.predict(img)
def process_dataset(dataset_dir):
img_filepaths = get_image_filepaths(dataset_dir)
start = time.time()
model = ModelWrapper(MODEL_FILEPATH)
print('Model init time:', round(time.time() - start, 2), 'sec')
start = time.time()
n_cpu = multiprocessing.cpu_count()
for _ in tqdm(ThreadPool(n_cpu).imap_unordered(process_single_file,
zip(itertools.repeat(model), img_filepaths)),
total=len(img_filepaths)):
pass
print('Processing time:', round(time.time() - start, 2), 'sec')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(dest='dataset_dir')
args = parser.parse_args()
process_dataset(args.dataset_dir)
Update:
After replacing multiprocessing.pool.ThreadPool
with multiprocessing.Pool
:
def process_dataset(dataset_dir):
img_filepaths = get_image_filepaths(dataset_dir)
start = time.time()
model = ModelWrapper(MODEL_FILEPATH)
print('Model init time:', round(time.time() - start, 2), 'sec')
start = time.time()
n_cpu = multiprocessing.cpu_count()
pool = multiprocessing.Pool(n_cpu)
it = pool.imap_unordered(process_single_file, zip(itertools.repeat(model), img_filepaths))
for _ in tqdm(it, total=len(img_filepaths)):
pass
print('Processing time:', round(time.time() - start, 2), 'sec')
I get an error:
Traceback (most recent call last):
File "tensorflow_example/multi_core_cpu_inference_multiprocessing.py", line 110, in <module>
process_dataset(args.dataset_dir)
File "tensorflow_example/multi_core_cpu_inference_multiprocessing.py", line 99, in process_dataset
for _ in tqdm(it, total=len(img_filepaths)):
File "/usr/local/lib/python3.6/site-packages/tqdm/_tqdm.py", line 979, in __iter__
for obj in iterable:
File "/usr/local/Cellar/python/3.6.5_1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/pool.py", line 735, in next
raise value
File "/usr/local/Cellar/python/3.6.5_1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/pool.py", line 424, in _handle_tasks
put(task)
File "/usr/local/Cellar/python/3.6.5_1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/connection.py", line 206, in send
self._send_bytes(_ForkingPickler.dumps(obj))
File "/usr/local/Cellar/python/3.6.5_1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
TypeError: can't pickle _thread.RLock objects