I am trying to use one hot encoder on the target column('Species') in the Iris dataset.
But I am getting the following errors:
ValueError: Expected 2D array, got 1D array instead:
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
0 1 5.1 3.5 1.4 0.2 Iris-setosa
1 2 4.9 3.0 1.4 0.2 Iris-setosa
2 3 4.7 3.2 1.3 0.2 Iris-setosa
3 4 4.6 3.1 1.5 0.2 Iris-setosa
4 5 5.0 3.6 1.4 0.2 Iris-setosa
I did google the issue and i found that most of the scikit learn estimators need a 2D array rather than a 1D array.
At the same time, I also found that we can try passing the dataframe with its index to encode single columns, but it didn't work
onehotencoder = OneHotEncoder(categorical_features=[df.columns.tolist().index('pattern_id')
X = dataset.iloc[:,1:5].values
y = dataset.iloc[:, 5].values
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder= LabelEncoder()
y = labelencoder.fit_transform(y)
onehotencoder = OneHotEncoder(categorical_features=[0])
y = onehotencoder.fit_transform(y)
I am trying to encode a single categorical column and split into multiple columns (the way the encoding usually works)