I am trying to restrict GPU memory allocation in a MonitoredTrainingSession.
The methods of setting tf.GPUOptions as shown here: How to prevent tensorflow from allocating the totality of a GPU memory? do not work out in the case of MonitoredTrainingSession.
I tried:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=.1)
# or allow_growth=True
config = tf.ConfigProto(allow_soft_placement=False,
device_filters=filters,
gpu_options=gpu_options)
scaffold = tf.train.Scaffold(saver=tf.train.Saver(max_to_keep=100, keep_checkpoint_every_n_hours=.5))
with tf.train.MonitoredTrainingSession(
server.target,
is_chief=True,
checkpoint_dir=log_dir,
scaffold=scaffold,
save_checkpoint_secs=600,
save_summaries_secs=30,
log_step_count_steps=int(1e7),
config=config) as session:
Despite using tf.GPUOptions memory consumption is 10189MiB / 11175MiB