This question may be dumb for you, but I'm a newbie who has searched online without any good answer. I've read every related post, online examples and explanation of terminology in summary()
. Please help.
I've build a multiple linear regression model and have predicted the prediction interval using predict()
.
Now I want to transfer my linear model to the excel which requires me to manually calculate the prediction interval. In the tutorial videos that show the calculation in excel use "Standard Error" to calculate.
However, the $summary() in R doesn't include any number with the same name as "Standard Error". All I find is Residual standard error: 0.53 on 7899 degrees of freedom
and Std. Error
for each coefficient.
I've tried prediction=1.96 * 0.53 + fitted value
to get the result, but the result is different from the result using predict(model,interval="prediction")
:
> tttt$manual_lwr<-tttt$fit-(summary(model)$sigma*1.96)
> tttt$manual_upr<-tttt$fit+(summary(model)$sigma*1.96)
fit lwr upr manual_lwr manual_upr
----------------------------------------------------------------------
7983 2.178983 1.134940 3.223025 1.1400892 3.217876
7891 3.711812 2.672044 4.751579 2.6729182 4.750705
503 3.911262 2.868349 4.954175 2.8723685 4.950155
8038 2.951495 1.910701 3.992289 1.9126020 3.990389
4147 3.612402 2.572248 4.652556 2.5735087 4.651295
And the table below is the output using predict(model, interval="confidence")
fit lwr upr
7983 2.178983 2.076833 2.281132
7891 3.711812 3.672752 3.750871
503 3.911262 3.821391 4.001133
8038 2.951495 2.890984 3.012006
4147 3.612402 3.564135 3.660670
Please tell me how to fix this problem or how to calculate manually in a correct way. Thank you!