I have this Keras code from some youtube video:
from keras.models import Sequential
from keras.layers import Embedding, SimpleRNN
model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32))
model.summary()
The output of the summary is this:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, None, 32) 320000
_________________________________________________________________
simple_rnn_1 (SimpleRNN) (None, 32) 2080
=================================================================
Total params: 322,080
Trainable params: 322,080
Non-trainable params:
First I don't understand why the number of params is 2080 in simple RNN. Next I don't get why output shape from the embedding layer is (None, None, 32)