I am training a LSTM using tf.learn in tensorflow. I have split the data into training (90%) and validation (10%) for this purpose. As I understand, a model usually fits better training data than validation data but I am getting the opposite results. Loss is lower and accuracy is higher for validation set.
As I have read in other answers, this can be because of dropout not being applied during validation. However, when I remove dropout from my LSTM architecture I validation loss is still lower than training loss (difference is smaller though).
Also, the loss shown at the end of each epoch is not an average of the losses over each batch (like when using Keras). It is the loss for he last batch. I also thought this could be a reason for my results but turned out it was not.
Training samples: 783
Validation samples: 87
--
Training Step: 4 | total loss: 1.08214 | time: 1.327s
| Adam | epoch: 001 | loss: 1.08214 - acc: 0.7549 | val_loss: 0.53043 - val_acc: 0.9885 -- iter: 783/783
--
Training Step: 8 | total loss: 0.41462 | time: 1.117s
| Adam | epoch: 002 | loss: 0.41462 - acc: 0.9759 | val_loss: 0.17027 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 12 | total loss: 0.15111 | time: 1.124s
| Adam | epoch: 003 | loss: 0.15111 - acc: 0.9984 | val_loss: 0.07488 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 16 | total loss: 0.10145 | time: 1.114s
| Adam | epoch: 004 | loss: 0.10145 - acc: 0.9950 | val_loss: 0.04173 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 20 | total loss: 0.26568 | time: 1.124s
| Adam | epoch: 005 | loss: 0.26568 - acc: 0.9615 | val_loss: 0.03077 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 24 | total loss: 0.11023 | time: 1.129s
| Adam | epoch: 006 | loss: 0.11023 - acc: 0.9863 | val_loss: 0.02607 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 28 | total loss: 0.07059 | time: 1.141s
| Adam | epoch: 007 | loss: 0.07059 - acc: 0.9934 | val_loss: 0.01882 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 32 | total loss: 0.03571 | time: 1.122s
| Adam | epoch: 008 | loss: 0.03571 - acc: 0.9977 | val_loss: 0.01524 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 36 | total loss: 0.05084 | time: 1.120s
| Adam | epoch: 009 | loss: 0.05084 - acc: 0.9948 | val_loss: 0.01384 - val_acc: 1.0000 -- iter: 783/783
--
Training Step: 40 | total loss: 0.22283 | time: 1.132s
| Adam | epoch: 010 | loss: 0.22283 - acc: 0.9714 | val_loss: 0.01227 - val_acc: 1.0000 -- iter: 783/783
The network used (note that dropout has been commented out):
def get_network_wide(frames, input_size, num_classes):
"""Create a one-layer LSTM"""
net = tflearn.input_data(shape=[None, frames, input_size])
#net = tflearn.lstm(net, 256, dropout=0.2)
net = tflearn.fully_connected(net, num_classes, activation='softmax')
net = tflearn.regression(net, optimizer='adam',
loss='categorical_crossentropy',metric='default', name='output1')
return net