My goal is to retrieve logits from a Keras neural network model. I read here: Keras - how to get unnormalized logits instead of probabilities
That I need to change the last activation layer to "linear." Here's my code
from __future__ import absolute_import, division, print_function
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
#Preprocessing
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images = train_images / 255.0
test_images = test_images / 255.0
#Preprocessing
#Generate the Model
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.linear)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5)
The problem happens on this line. Is there a better way to get the logits? If not how do I get the activation to be linear?
keras.layers.Dense(10, activation=tf.nn.linear)