I posted a similar question a few days ago but without any code, now I created a test code in hopes of getting some help.
Code is at the bottom.
I got some dataset where I have a bunch of large files (~100) and I want to extract specific lines from those files very efficiently (both in memory and in speed).
My code gets a list of relevant files, the code opens each file with [line 1], then maps the file to memory with [line 2], also, for each file I receives a list of indices and going over the indices I retrieve the relevant information (10 bytes for this example) like so: [line 3-4], finally I close the handles with [line 5-6].
binaryFile = open(path, "r+b")
binaryFile_mm = mmap.mmap(binaryFile.fileno(), 0)
for INDEX in INDEXES:
information = binaryFile_mm[(INDEX):(INDEX)+10].decode("utf-8")
binaryFile_mm.close()
binaryFile.close()
This codes runs in parallel, with thousands of indices for each file, and continuously do that several times a second for hours.
Now to the problem - The code runs well when I limit the indices to be small (meaning - when I ask the code to get information from the beginning of the file). But! when I increase the range of the indices, everything slows down to (almost) a halt AND the buff/cache memory gets full (I'm not sure if the memory issue is related to the slowdown).
So my question is why does it matter if I retrieve information from the beginning or the end of the file and how do I overcome this in order to get instant access to information from the end of the file without slowing down and increasing buff/cache memory use.
PS - some numbers and sizes: so I got ~100 files each about 1GB in size, when I limit the indices to be from the 0%-10% of the file it runs fine, but when I allow the index to be anywhere in the file it stops working.
Code - tested on linux and windows with python 3.5, requires 10 GB of storage (creates 3 files with random strings inside 3GB each)
import os, errno, sys
import random, time
import mmap
def create_binary_test_file():
print("Creating files with 3,000,000,000 characters, takes a few seconds...")
test_binary_file1 = open("test_binary_file1.testbin", "wb")
test_binary_file2 = open("test_binary_file2.testbin", "wb")
test_binary_file3 = open("test_binary_file3.testbin", "wb")
for i in range(1000):
if i % 100 == 0 :
print("progress - ", i/10, " % ")
# efficiently create random strings and write to files
tbl = bytes.maketrans(bytearray(range(256)),
bytearray([ord(b'a') + b % 26 for b in range(256)]))
random_string = (os.urandom(3000000).translate(tbl))
test_binary_file1.write(str(random_string).encode('utf-8'))
test_binary_file2.write(str(random_string).encode('utf-8'))
test_binary_file3.write(str(random_string).encode('utf-8'))
test_binary_file1.close()
test_binary_file2.close()
test_binary_file3.close()
print("Created binary file for testing.The file contains 3,000,000,000 characters")
# Opening binary test file
try:
binary_file = open("test_binary_file1.testbin", "r+b")
except OSError as e: # this would be "except OSError, e:" before Python 2.6
if e.errno == errno.ENOENT: # errno.ENOENT = no such file or directory
create_binary_test_file()
binary_file = open("test_binary_file1.testbin", "r+b")
## example of use - perform 100 times, in each itteration: open one of the binary files and retrieve 5,000 sample strings
## (if code runs fast and without a slowdown - increase the k or other numbers and it should reproduce the problem)
## Example 1 - getting information from start of file
print("Getting information from start of file")
etime = []
for i in range(100):
start = time.time()
binary_file_mm = mmap.mmap(binary_file.fileno(), 0)
sample_index_list = random.sample(range(1,100000-1000), k=50000)
sampled_data = [[binary_file_mm[v:v+1000].decode("utf-8")] for v in sample_index_list]
binary_file_mm.close()
binary_file.close()
file_number = random.randint(1, 3)
binary_file = open("test_binary_file" + str(file_number) + ".testbin", "r+b")
etime.append((time.time() - start))
if i % 10 == 9 :
print("Iter ", i, " \tAverage time - ", '%.5f' % (sum(etime[-9:]) / len(etime[-9:])))
binary_file.close()
## Example 2 - getting information from all of the file
print("Getting information from all of the file")
binary_file = open("test_binary_file1.testbin", "r+b")
etime = []
for i in range(100):
start = time.time()
binary_file_mm = mmap.mmap(binary_file.fileno(), 0)
sample_index_list = random.sample(range(1,3000000000-1000), k=50000)
sampled_data = [[binary_file_mm[v:v+1000].decode("utf-8")] for v in sample_index_list]
binary_file_mm.close()
binary_file.close()
file_number = random.randint(1, 3)
binary_file = open("test_binary_file" + str(file_number) + ".testbin", "r+b")
etime.append((time.time() - start))
if i % 10 == 9 :
print("Iter ", i, " \tAverage time - ", '%.5f' % (sum(etime[-9:]) / len(etime[-9:])))
binary_file.close()
My results: (The average time of getting information from all across the file is almost 4 times slower than getting information from the beginning, with ~100 files and parallel computing this difference gets much bigger)
Getting information from start of file
Iter 9 Average time - 0.14790
Iter 19 Average time - 0.14590
Iter 29 Average time - 0.14456
Iter 39 Average time - 0.14279
Iter 49 Average time - 0.14256
Iter 59 Average time - 0.14312
Iter 69 Average time - 0.14145
Iter 79 Average time - 0.13867
Iter 89 Average time - 0.14079
Iter 99 Average time - 0.13979
Getting information from all of the file
Iter 9 Average time - 0.46114
Iter 19 Average time - 0.47547
Iter 29 Average time - 0.47936
Iter 39 Average time - 0.47469
Iter 49 Average time - 0.47158
Iter 59 Average time - 0.47114
Iter 69 Average time - 0.47247
Iter 79 Average time - 0.47881
Iter 89 Average time - 0.47792
Iter 99 Average time - 0.47681