Not sure I understand the question. But here's my attempt: Why not create an extractor?
object ValidBigInt {
def unapply(s: String): Option[Int] = {
val bi = BigInt(s)
if (bi.isValidInt) Some(bi.intValue) else None
}
}
val toInt: PartialFunction[String, Int] = {
case ValidBigInt(i) => i
}
The other option is (and that may answer the question as to whether one can create PartialFunction
other than with a case
literal):
val toInt = new PartialFunction[String, Int] {
def isDefinedAt(s: String) = BigInt(s).isValidInt
def apply(s: String) = BigInt(s).intValue
}
However since the idea of a partial function is that it's only partially defined, in the end you will still do redundant things -- you need to create a big int to test whether it's valid, and then in the function application you create the big int again...
I saw a project at Github that tried to come around this by somewhat caching the results from isDefinedAt
. If you go down to the benchmarks, you'll see that it turned out to be slower than the default Scala implementation :)
So if you want to get around the double nature of isDefinedAt
versus apply
, you should just go straight for a (full) function that provides an Option[Int]
as result.