Let's get right to the heart of the matter!
- Every permutation of
[0,1,2,3,4,5,6,7,8,9]
is a list of length 10.
[G,I,V,E,M,O,N,Y]
is a list of length 8.
- No permutation of
[0,1,2,3,4,5,6,7,8,9]
can be unified with [G,I,V,E,M,O,N,Y]
.
As a quick-fix, adapt the definition of check/1
like this:
check([G,I,V,E,M,O,N,Y,_,_]) :-
find( VAL, G,I,V,E),
G >= 1,
find2(VALR, M,E),
M >= 1,
find3(VALA, M,O,N,E,Y),
VAL * VALR =:= VALA.
Then, run the following "fixed" query:
?- Expr = ([G,I,V,E]*[M,E] = [M,O,N,E,Y]),
Zs = [G,I,V,E,M,O,N,Y,_,_],
time(solve(Zs)).
% 24,641,436 inferences, 7.692 CPU in 7.709 seconds (100% CPU, 3203506 Lips)
Expr = ([1,0,7,2] * [9,2] = [9,8,6,2,4]),
Zs = [1,0,7,2,9,8,6,4,3,5] ;
% 7,355 inferences, 0.007 CPU in 0.007 seconds (100% CPU, 1058235 Lips)
Expr = ([1,0,7,2] * [9,2] = [9,8,6,2,4]), % redundant
Zs = [1,0,7,2,9,8,6,4,5,3] ;
% 6,169,314 inferences, 1.935 CPU in 1.939 seconds (100% CPU, 3188312 Lips)
Expr = ([1,0,9,2] * [7,2] = [7,8,6,2,4]),
Zs = [1,0,9,2,7,8,6,4,3,5] ;
% 7,355 inferences, 0.005 CPU in 0.005 seconds (99% CPU, 1360603 Lips)
Expr = ([1,0,9,2] * [7,2] = [7,8,6,2,4]), % redundant
Zs = [1,0,9,2,7,8,6,4,5,3] ;
% 6,234,555 inferences, 1.955 CPU in 1.959 seconds (100% CPU, 3189462 Lips)
false.
Here's another way to solve the problem:
First, use clpfd!
:- use_module(library(clpfd)).
Second, (re-)use code presented earlier in my answer
to the related question Faster implementation of verbal arithmetic in Prolog:
?- Expr = ([G,I,V,E] * [M,E] #= [M,O,N,E,Y]),
Zs = [G,I,V,E,M,O,N,Y],
crypt_arith_(Expr,Zs),
time(labeling([],Zs)).
% 397,472 inferences, 0.088 CPU in 0.088 seconds (100% CPU, 4521899 Lips)
Expr = ([1,0,7,2] * [9,2] #= [9,8,6,2,4]), Zs = [1,0,7,2,9,8,6,4] ;
% 128,982 inferences, 0.037 CPU in 0.037 seconds (100% CPU, 3502788 Lips)
Expr = ([1,0,9,2] * [7,2] #= [7,8,6,2,4]), Zs = [1,0,9,2,7,8,6,4] ;
% 77,809 inferences, 0.028 CPU in 0.028 seconds (100% CPU, 2771783 Lips)
false.
No redundant solutions. Orders of magnitude faster than "generate & test". clpfd rocks!