I need to calculate the Fourier transform of a 256 element float64 signal. The requirement is as such that I need to invoke these FFTs from inside a cuda.jitted section and it must be completed within 25usec. Alas cuda.jit-compiled functions do not allow to invoke external libraries => I wrote my own. Alas my single-core code is still way too slow (~250usec on a Quadro P4000). Is there a better way?
I created a single core FFT-function that gives correct results, but is alas 10x too slow. I don't understand how to make good use of multiple cores.
---fft.py
from numba import cuda, boolean, void, int32, float32, float64, complex128
import math, sys, cmath
def _transform_radix2(vector, inverse, out):
n = len(vector)
levels = int32(math.log(float32(n))/math.log(float32(2)))
assert 2**levels==n # error: Length is not a power of 2
#uncomment either Numba.Cuda or Numpy memory allocation, (intelligent conditional compileation??)
exptable = cuda.local.array(1024, dtype=complex128)
#exptable = np.zeros(1024, np.complex128)
assert (n // 2) <= len(exptable) # error: FFT length > MAXFFTSIZE
coef = complex128((2j if inverse else -2j) * math.pi / n)
for i in range(n // 2):
exptable[i] = cmath.exp(i * coef)
for i in range(n):
x = i
y = 0
for j in range(levels):
y = (y << 1) | (x & 1)
x >>= 1
out[i] = vector[y]
size = 2
while size <= n:
halfsize = size // 2
tablestep = n // size
for i in range(0, n, size):
k = 0
for j in range(i, i + halfsize):
temp = out[j + halfsize] * exptable[k]
out[j + halfsize] = out[j] - temp
out[j] += temp
k += tablestep
size *= 2
scale=float64(n if inverse else 1)
for i in range(n):
out[i]=out[i]/scale # the inverse requires a scaling
# now create the Numba.cuda version to be called by a GPU
gtransform_radix2 = cuda.jit(device=True)(_transform_radix2)
---test.py
from numba import cuda, void, float64, complex128, boolean
import cupy as cp
import numpy as np
import timeit
import fft
@cuda.jit(void(float64[:],boolean, complex128[:]))
def fftbench(y, inverse, FT):
Y = cuda.local.array(256, dtype=complex128)
for i in range(len(y)):
Y[i]=complex128(y[i])
fft.gtransform_radix2(Y, False, FT)
str='\nbest [%2d/%2d] iterations, min:[%9.3f], max:[%9.3f], mean:[%9.3f], std:[%9.3f] usec'
a=[127.734375 ,130.87890625 ,132.1953125 ,129.62109375 ,118.6015625
,110.2890625 ,106.55078125 ,104.8203125 ,106.1875 ,109.328125
,113.5 ,118.6640625 ,125.71875 ,127.625 ,120.890625
,114.04296875 ,112.0078125 ,112.71484375 ,110.18359375 ,104.8828125
,104.47265625 ,106.65625 ,109.53515625 ,110.73828125 ,111.2421875
,112.28125 ,112.38671875 ,112.7734375 ,112.7421875 ,113.1328125
,113.24609375 ,113.15625 ,113.66015625 ,114.19921875 ,114.5
,114.5546875 ,115.09765625 ,115.2890625 ,115.7265625 ,115.41796875
,115.73828125 ,116. ,116.55078125 ,116.5625 ,116.33984375
,116.63671875 ,117.015625 ,117.25 ,117.41015625 ,117.6640625
,117.859375 ,117.91015625 ,118.38671875 ,118.51171875 ,118.69921875
,118.80859375 ,118.67578125 ,118.78125 ,118.49609375 ,119.0078125
,119.09375 ,119.15234375 ,119.33984375 ,119.31640625 ,119.6640625
,119.890625 ,119.80078125 ,119.69140625 ,119.65625 ,119.83984375
,119.9609375 ,120.15625 ,120.2734375 ,120.47265625 ,120.671875
,120.796875 ,120.4609375 ,121.1171875 ,121.35546875 ,120.94921875
,120.984375 ,121.35546875 ,120.87109375 ,120.8359375 ,121.2265625
,121.2109375 ,120.859375 ,121.17578125 ,121.60546875 ,121.84375
,121.5859375 ,121.6796875 ,121.671875 ,121.78125 ,121.796875
,121.8828125 ,121.9921875 ,121.8984375 ,122.1640625 ,121.9375
,122. ,122.3515625 ,122.359375 ,122.1875 ,122.01171875
,121.91015625 ,122.11328125 ,122.1171875 ,122.6484375 ,122.81640625
,122.33984375 ,122.265625 ,122.78125 ,122.44921875 ,122.34765625
,122.59765625 ,122.63671875 ,122.6796875 ,122.6171875 ,122.34375
,122.359375 ,122.7109375 ,122.83984375 ,122.546875 ,122.25390625
,122.06640625 ,122.578125 ,122.7109375 ,122.83203125 ,122.5390625
,122.2421875 ,122.06640625 ,122.265625 ,122.13671875 ,121.8046875
,121.87890625 ,121.88671875 ,122.2265625 ,121.63671875 ,121.14453125
,120.84375 ,120.390625 ,119.875 ,119.34765625 ,119.0390625
,118.4609375 ,117.828125 ,117.1953125 ,116.9921875 ,116.046875
,115.16015625 ,114.359375 ,113.1875 ,110.390625 ,108.41796875
,111.90234375 ,117.296875 ,127.0234375 ,147.58984375 ,158.625
,129.8515625 ,120.96484375 ,124.90234375 ,130.17578125 ,136.47265625
,143.9296875 ,150.24609375 ,141. ,117.71484375 ,109.80859375
,115.24609375 ,118.44140625 ,120.640625 ,120.9921875 ,111.828125
,101.6953125 ,111.21484375 ,114.91015625 ,115.2265625 ,118.21875
,125.3359375 ,139.44140625 ,139.76953125 ,135.84765625 ,137.3671875
,141.67578125 ,139.53125 ,136.44921875 ,135.08203125 ,135.7890625
,137.58203125 ,138.7265625 ,154.33203125 ,172.01171875 ,152.24609375
,129.8046875 ,125.59375 ,125.234375 ,127.32421875 ,132.8984375
,147.98828125 ,152.328125 ,153.7734375 ,155.09765625 ,156.66796875
,159.0546875 ,151.83203125 ,138.91796875 ,138.0546875 ,140.671875
,143.48046875 ,143.99609375 ,146.875 ,146.7578125 ,141.15234375
,141.5 ,140.76953125 ,140.8828125 ,145.5625 ,150.78125
,148.89453125 ,150.02734375 ,150.70703125 ,152.24609375 ,148.47265625
,131.95703125 ,125.40625 ,123.265625 ,123.57421875 ,129.859375
,135.6484375 ,144.51171875 ,155.05078125 ,158.4453125 ,140.8125
,100.08984375 ,104.29296875 ,128.55078125 ,139.9921875 ,143.38671875
,143.69921875 ,137.734375 ,124.48046875 ,116.73828125 ,114.84765625
,113.85546875 ,117.45703125 ,122.859375 ,125.8515625 ,133.22265625
,139.484375 ,135.75 ,122.69921875 ,115.7734375 ,116.9375
,127.57421875]
y1 =cp.zeros(len(a), cp.complex128)
FT1=cp.zeros(len(a), cp.complex128)
for i in range(len(a)):
y1[i]=a[i] #convert to complex to feed the FFT
r=1000
series=sorted(timeit.repeat("fftbench(y1, False, FT1)", number=1, repeat=r, globals=globals()))
series=series[0:r-5]
print(str % (len(series), r, 1e6*np.min(series), 1e6*np.max(series), 1e6*np.mean(series), 1e6*np.std(series)));
a faster implementation t<<25usec