i'm training a neural network model using tensorflow , for image segmentation , and i want to be able to extract the images after training, from the final logits layer
here is the decoder part of my model
DECODER
upsampling layer 1 :
upsample1 = tf.image.resize_images(pool5, size=(200, 200), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
Deconvolutional layer 1 :
deconv1 = tf.layers.conv2d_transpose(inputs=upsample1, filters=512, kernel_size=(3, 3),strides=(1, 1), padding='same',
activation=tf.nn.relu)
deconv1bis = tf.layers.conv2d_transpose(inputs=deconv1, filters=512, kernel_size=(3, 3),strides=(1, 1), padding='same',
activation=tf.nn.relu)
deconv1bisbis = tf.layers.conv2d_transpose(inputs=deconv1bis, filters=512, kernel_size=(3, 3),strides=(1, 1), padding='same',
activation=tf.nn.relu)
upsampling layer 2 :
upsample2 = tf.image.resize_images(deconv1bisbis, size=(200, 200), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
Deconvolutional layer 2 :
deconv2 = tf.layers.conv2d_transpose(inputs=upsample2, filters=512,strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
deconv2bis = tf.layers.conv2d_transpose(inputs=deconv2, filters=512,strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
deconv2bisbis = tf.layers.conv2d_transpose(inputs=deconv2bis, filters=512, strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
upsampling layer 3 :
upsample3 = tf.image.resize_images(deconv2bisbis, size=(200, 200), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
Deconvolutional layer 3 :
deconv3 = tf.layers.conv2d_transpose(inputs=upsample3, filters=256,strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
deconv3bis = tf.layers.conv2d_transpose(inputs=deconv3, filters=256,strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
deconv3bisbis = tf.layers.conv2d_transpose(inputs=deconv3bis, filters=512,strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
upsampling layer 4 :
upsample4 = tf.image.resize_images(deconv3bisbis, size=(200, 200), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
Deconvolutional layer 4 :
deconv4 = tf.layers.conv2d_transpose(inputs=upsample4, filters=128,strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
deconv4bis = tf.layers.conv2d_transpose(inputs=deconv4, filters=128,strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
upsampling layer 5 :
upsample5 = tf.image.resize_images(deconv4bis, size=(200, 200), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
Deconvolutional layer 5 :
deconv5 = tf.layers.conv2d_transpose(inputs=upsample5, filters=64,strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
deconv5bis = tf.layers.conv2d_transpose(inputs=deconv5, filters=64,strides=(1, 1), kernel_size=(3, 3), padding='same',
activation=tf.nn.relu)
Logits Layer
logits = tf.layers.dense(inputs=deconv5bis, units=1, activation=tf.nn.relu)
any one have an idea how i can do that ?