I have defined the following function (MWE)
(Note the formulation is an adaption of this formulation: How to Build a Distance Matrix without a Loop (Vectorization)?, as well as http://nonconditional.com/2014/04/on-the-trick-for-computing-the-squared-euclidian-distances-between-two-sets-of-vectors/)
#include <stdlib.h>
#include <chrono>
#include <Eigen/Dense>
#include <iostream>
using MyMatrix = Eigen::MatrixXd;
using MyMatrix1D = Eigen::VectorXd;
//Calculates e^(scale * ||x-y||_2^2), where ||x-y|| is euclidean distatnce
MyMatrix get_kernel_matrix(const Eigen::Ref<const MyMatrix> x, const Eigen::Ref<const MyMatrix> y)
{
const double scale = 0.017;
const MyMatrix1D XX = x.array().square().rowwise().sum().matrix();
const MyMatrix1D YY = y.array().square().rowwise().sum().matrix();
return (((((-2*x)*y.transpose()).colwise() + XX).rowwise() + YY.transpose()).array() * scale).exp().matrix();
}
int main(int argc, char** argv) {
const int num_x = 2500;
const int num_y = 2500;
const MyMatrix X = MyMatrix::Random(num_x, 2);
const MyMatrix Y = MyMatrix::Random(num_y, 2);
const auto t_b_gen = std::chrono::high_resolution_clock::now();
const MyMatrix k_xp_x(std::move(get_kernel_matrix(X, Y)));
const auto t_a_gen = std::chrono::high_resolution_clock::now();
long t_gen = std::chrono::duration_cast<std::chrono::nanoseconds>(t_a_gen - t_b_gen).count();
std::cout << "Time: " << t_gen << std::endl;
}
which one would expect would take 2500*2500*8bytes = 50MB of memory. However, running /usr/bin/time -v kern_double
reports: Maximum resident set size (kbytes): 103288
.
Running the program through Massif indicates that the 50MB block is allocated twice, once in the functin call, and once Eigen::internal::cal_dense_assignment. I have attempted with and without std::move
to try to force copy elision, however I have not been able to reduce the memory footprint.
What am I doing incorrectly and how can I fix this to use only the required memory rather than double?