I'm comparing the results of convolution in Python (using sympy
's symbolic variables) and Mathematica with its Convolve function.
In Python, my MWE is
from numpy import linspace, pi
from numpy.random import randn
from scipy.signal import fftconvolve
import matplotlib.pyplot as plt
from sympy import symbols
from sympy.utilities.lambdify import lambdify
a = 0.43
b = 0.41
c = 0.65
d = 0.71
x = symbols('x')
f = 2*b / ((x-a)**2 + b**2)
g = 2*d / ((x-c)**2 + d**2)
fog = fftconvolve(f,g,mode='same')
fog_fun = lambdify(x,fog,'numpy') # returns a numpy-ready function
x = linspace(-20,20,int(1e3))
dx = x[1]-x[0]
fogS = fog_fun(x)
fogA = 4*pi*(b+d)/((x-a-c)**2+(b+d)**2) # correct analytic solution
plt.figure()
plt.plot(x,fogA,lw=2,label='analytic')
plt.plot(x,fogS,lw=2,label='sympy')
plt.grid()
plt.legend(loc='best')
plt.show()
which calculates a convolution using symbolic variable x
. The resulting function (before lambdifying) is
fog = 1.1644/(((x - 0.65)**2 + 0.5041)*((x - 0.43)**2 + 0.1681))
There is no agreement between analytic
(fogA
, Mathematica) and sympy
(fogS
, Python):
My Mathematica code is:
a = 0.43; b = 0.41; c = 0.65; d = 0.71;
fogA = FullSimplify[Convolve[2*b/((t-a)^2+b^2),2*d/((t-c)^2+d^2), t, x]];
fogS = 1.1644/(((x - 0.65)^2 + 0.5041)*((x - 0.43)^2 + 0.1681));
where
fogA = (17.683+x*(-30.4006+14.0743*x))/(3.04149+x*(-7.9428+x*(8.3428+x*(-4.32+1.*x))))
and graphs for fogS
and fogA
are the same as for Python.
Why is there such a large disagreement between the analytic
and sympy
solution? I suspect the problem lies with sympy
. Another Pythonic method is to convolve two arrays which seems to agree with the analytic
solution.
f = 2*b / ((x-a)**2 + b**2)
g = 2*d / ((x-c)**2 + d**2)
fogN = fftconvolve(f,g,mode='same')*dx # numeric
(Note: this is a MWE. The actual f
and g
I want to convolve are much more complicated than the Lorentzians defined in this post.)