I have something very similar, and it works fine with me. Please note that I call ToArray() after the Linq query finishes, that triggers the tasks:
using (HttpClient client = new HttpClient()) {
IEnumerable<Task<string>> _downloads = _group
.Select(job => {
await Task.Delay(300);
return client.GetStringAsync(<url with variable job>);
});
Task<string>[] _downloadTasks = _downloads.ToArray();
_pages = await Task.WhenAll(_downloadTasks);
}
Now please note that this will create n nunmber of tasks, all in parallel, and the Task.Delay literally does nothing. If you want to call the pages synchronously (as it sounds by putting a delay between the calls), then this code may be better:
using (HttpClient client = new HttpClient()) {
foreach (string job in _group) {
await Task.Delay(300);
_pages.Add(await client.GetStringAsync(<url with variable job>));
}
}
The download of the pages is still asynchronous (while downloading other tasks are done), but each call to download the page is synchronous, ensuring that you can wait for one to finish in order to call the next one.
The code can be easily changed to call the pages asynchronously in chunks, like every 10 pages, wait 300ms, like in this sample:
IEnumerable<string[]> toParse = myData
.Select((v, i) => new { v.code, group = i / 20 })
.GroupBy(x => x.group)
.Select(g => g.Select(x => x.code).ToArray());
using (HttpClient client = new HttpClient()) {
foreach (string[] _group in toParse) {
string[] _pages = null;
IEnumerable<Task<string>> _downloads = _group
.Select(job => {
return client.GetStringAsync(<url with job>);
});
Task<string>[] _downloadTasks = _downloads.ToArray();
_pages = await Task.WhenAll(_downloadTasks);
await Task.Delay(5000);
}
}
All this does is group your pages in chunks of 20, iterate through the chunks, download all pages of the chunk asynchronously, wait 5 seconds, move on to the next chunk.
I hope that is what you were waiting for :)