Consider example matrix array:
[[0 1 2 1 0]
[1 1 2 1 0]
[0 1 0 0 0]
[1 2 1 0 0]
[1 2 2 3 2]]
What I need to do:
- find maxima in every row
- select smaller surrounding of the maxima from every row (3 values in this case)
- paste the surrounding of the maxima into new array (narrower)
For the example above, the result is:
[[ 1. 2. 1.]
[ 1. 2. 1.]
[ 0. 1. 0.]
[ 1. 2. 1.]
[ 2. 3. 2.]]
My current working code:
import numpy as np
A = np.array([
[0, 1, 2, 1, 0],
[1, 1, 2, 1, 0],
[0, 1, 0, 0, 0],
[1, 2, 1, 0, 0],
[1, 2, 2, 3, 2],
])
b = A.argmax(axis=1)
C = np.zeros((len(A), 3))
for idx, loc, row in zip(range(len(A)), b, A):
print(idx, loc, row)
C[idx] = row[loc-1:loc+2]
print(C)
My question:
How to get rid of the for loop and replace it with some cheaper numpy operation?
Note:
This algorithm is for straightening broken "lines" in video stream frames with thousands of rows.