I have a dict of time series as pandas.DataFrame
objects each with an arbitrary number of columns.
I want to convert each DataFrame into a list of dict (eg, [{"col1": "row1", "col2": "row2", ..}, {"col1": "row2", ..}, ..]
, then sort them by the timestamp value of each dict (timestamp is mandatory in each DataFrame).
This is a performance improvement question. The code below works but I'm trying to find the fastest possible way to do it.
I know this problem could be parallelized, but am not sure if it's the optimal route.
import pandas as pd
import numpy as np
def gen_random_df(rows):
df = pd.DataFrame({'x': np.random.normal(rows), 'y': np.random.normal(rows), 'z': np.random.normal(rows)},
index=pd.date_range('1900-01-01', '2049-12-31')[:rows])
df.index.name = 'timestamp'
return df
def to_list1(df, symbol):
df = df.reset_index()
return [dict(zip(df.columns, v), symbol=symbol) for v in df.values]
def method1(dict_of_dfs):
data = []
for symbol, df in dict_of_dfs.items():
data.extend(to_list1(df, symbol))
return sorted(data, key=lambda x: x['timestamp'])
Second method:
def method2(dict_of_dfs):
dict_of_dfs = {symbol: df.assign(symbol=symbol) for symbol, df in dict_of_dfs.items()}
data = pd.concat(dict_of_dfs.values(), axis=0).reset_index().to_dict('index').values()
return list(data)
Here's the performance of the two approaches. Method1 is the fastest one, but can it be improved?
symbols = 10
rows = 10_000
dict_of_dfs = {str(symbol): gen_random_df(rows) for symbol in range(symbols)}
%timeit result = method1(dict_of_dfs)
1.46 s ± 64.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
it
%timeit result = method2(dict_of_dfs)
1.87 s ± 102 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Here's the expected result:
result[:3]
[{'timestamp': Timestamp('1900-01-01 00:00:00'),
'x': 9998.31375178033,
'y': 10000.298442533112,
'z': 9999.538765089255,
'symbol': '0'},
{'timestamp': Timestamp('1900-01-02 00:00:00'),
'x': 9998.31375178033,
'y': 10000.298442533112,
'z': 9999.538765089255,
'symbol': '0'},
{'timestamp': Timestamp('1900-01-03 00:00:00'),
'x': 9998.31375178033,
'y': 10000.298442533112,
'z': 9999.538765089255,
'symbol': '0'}]