Pandas: select DF rows based on another DF is the closest answer I can find to my question, but I don't believe it quite solves it.
Anyway, I am working with two very large pandas dataframes (so speed is a consideration), df_emails and df_trips, both of which are already sorted by CustID and then by date.
df_emails includes the date we sent a customer an email and it looks like this:
CustID DateSent
0 2 2018-01-20
1 2 2018-02-19
2 2 2018-03-31
3 4 2018-01-10
4 4 2018-02-26
5 5 2018-02-01
6 5 2018-02-07
df_trips includes the dates a customer came to the store and how much they spent, and it looks like this:
CustID TripDate TotalSpend
0 2 2018-02-04 25
1 2 2018-02-16 100
2 2 2018-02-22 250
3 4 2018-01-03 50
4 4 2018-02-28 100
5 4 2018-03-21 100
6 8 2018-01-07 200
Basically, what I need to do is find the number of trips and total spend for each customer in between each email sent. If it is the last time an email is sent for a given customer, I need to find the total number of trips and total spend after the email, but before the end of the data (2018-04-01). So the final dataframe would look like this:
CustID DateSent NextDateSentOrEndOfData TripsBetween TotalSpendBetween
0 2 2018-01-20 2018-02-19 2.0 125.0
1 2 2018-02-19 2018-03-31 1.0 250.0
2 2 2018-03-31 2018-04-01 0.0 0.0
3 4 2018-01-10 2018-02-26 0.0 0.0
4 4 2018-02-26 2018-04-01 2.0 200.0
5 5 2018-02-01 2018-02-07 0.0 0.0
6 5 2018-02-07 2018-04-01 0.0 0.0
Though I have tried my best to do this in a Python/Pandas friendly way, the only accurate solution I have been able to implement is through an np.where, shifting, and looping. The solution looks like this:
df_emails["CustNthVisit"] = df_emails.groupby("CustID").cumcount()+1
df_emails["CustTotalVisit"] = df_emails.groupby("CustID")["CustID"].transform('count')
df_emails["NextDateSentOrEndOfData"] = pd.to_datetime(df_emails["DateSent"].shift(-1)).where(df_emails["CustNthVisit"] != df_emails["CustTotalVisit"], pd.to_datetime('04-01-2018'))
for i in df_emails.index:
df_emails.at[i, "TripsBetween"] = len(df_trips[(df_trips["CustID"] == df_emails.at[i, "CustID"]) & (df_trips["TripDate"] > df_emails.at[i,"DateSent"]) & (df_trips["TripDate"] < df_emails.at[i,"NextDateSentOrEndOfData"])])
for i in df_emails.index:
df_emails.at[i, "TotalSpendBetween"] = df_trips[(df_trips["CustID"] == df_emails.at[i, "CustID"]) & (df_trips["TripDate"] > df_emails.at[i,"DateSent"]) & (df_trips["TripDate"] < df_emails.at[i,"NextDateSentOrEndOfData"])].TotalSpend.sum()
df_emails.drop(['CustNthVisit',"CustTotalVisit"], axis=1, inplace=True)
However, a %%timeit has revealed that this takes 10.6ms on just the seven rows shown above, which makes this solution pretty much infeasible on my actual datasets of about 1,000,000 rows. Does anyone know a solution here that is faster and thus feasible?