since Excel Solver is quite slow to run on thousands of optimizations (the reason being that it uses the spreadsheet as interface), I'm trying to implement a similar (problem-specific) solver in C++ (with Visual Studio 2010, on a Win 7 64-bit platform). I would include the DLL via a Declare statement in VBA and already have experience in doing this, so this is not the problem.
My problem would be minimizing the sum of squared errors between empirical data and a target function which is non-linear but smooth, and the problem would include non-negativity (X>=0) or even positivity constraints (e.g. X>=0.00000001), with X denoting the decision variable.
I'm looking for a robust, proven implementation. It may be part of an established library. For example, I've already looked into what ALGLIB has in store (see http://www.alglib.net/optimization/) and it seems only one of their algorithms accepts bounded constraints. But I don't know what it's worth, though, that's why I'm trying to gather some opinions.
Or, on another note, would it be advisable to augment ALGLIB's Levenberg-Marquardt algorithm with such basic constraints, for example by rejecting every intermediate solution that does not satisfy my constraints? (guess that won't do it, but it's still worth asking)