I have a dataframe and I want to reformat it in order it remove the instances of whether a missing value or a zero occurs before the first non-zero value appears across a row. However I do not want to delete any rows or columns and I do not want to remove any 0s or missing values which appear after the non-zeroes.
Below is the dataframe I am working with:
> data =[['Adam',2.55,4.53,3.45,2.12,3.14],['Bill',np.NaN,2.14,3.65,4.12],['Chris',np.NaN,0,2.82,0,6.04],['David',np.NaN,0,7.42,3.52]]
> df = pd.DataFrame(data, columns = ['Name', 'A','B','C','D','E'])
Moreover, here is the expected outcome:
> data1 =[['Adam',2.55,4.53,3.45,2.12,3.14],['Bill',2.14,3.65,4.12],['Chris',2.82,0,6.04],['David',7.42,3.52]]
> df1 = pd.DataFrame(data1, columns = ['Name', 'A','B','C','D','E'])