Before you go about doing what you say, note that a perfect shuffle is not a good idea if you are looking to randomize the order of a deck:
A perfect faro shuffle, where the cards are perfectly alternated, is considered one of the most difficult sleights of card manipulation, because it requires the shuffler to cut the deck into two equal stacks and apply just the right pressure when pushing the half decks into each other. If one manages to perform eight perfect faro out-shuffles in a row, then the deck of 52 cards will be restored to its original order. If one can do perfect in-shuffles, then 26 shuffles will reverse the order of the deck and 26 more will restore it to its original order.
If you want a random shuffle, on the other hand, the way to go is a Fisher-Yates shuffle. From the wikipedia page:
To shuffle an array a of n elements (indexes 0..n-1):
for i from n − 1 downto 1 do
j ← random integer with 0 ≤ j ≤ i
exchange a[j] and a[i]
Note, however, that depending on your randomness criteria, the standard Java random number generator may not be sufficient: (also from the Wikipedia page:)
For example, the built-in pseudorandom number generator provided by many programming languages and/or libraries may often have only 32 bits of internal state, which means it can only produce 232 different sequences of numbers. If such a generator is used to shuffle a deck of 52 playing cards, it can only ever produce a very small fraction of the 52! ≈ 2225.6 possible permutations. It's impossible for a generator with less than 226 bits of internal state to produce all the possible permutations of a 52-card deck. It has been suggested[citation needed] that confidence that the shuffle is unbiased can only be attained with a generator with more than about 250 bits of state.
Mersenne Twister is a well-known random number generator that would be adequate.
edit: for a literal answer to your original question, here's how I would probably do it (including a test method):
import java.util.Arrays;
public class Shuffle {
/* assumes input and output arrays are same length (N) */
static public <T> void perfectShuffle(T[] input, T[] output, int N)
{
int itop = 0;
int ibottom = N - (N/2);
/* bottom has (N/2) elements; for odd N this is rounded down,
* and the top part has 1 more element */
int k = 0;
while (ibottom < N)
{
output[k++] = input[itop++];
output[k++] = input[ibottom++];
}
// handle last element for N = odd
if (k < N)
output[k] = input[itop];
}
public static void main(String[] args) {
int N = 19;
String[] in = new String[N];
String[] out = new String[N];
for (int i = 0; i < N; ++i)
in[i] = Integer.toString(i);
perfectShuffle(in, out, N);
System.out.println(Arrays.asList(out));
}
}
output of main()
:
[0, 10, 1, 11, 2, 12, 3, 13, 4, 14, 5, 15, 6, 16, 7, 17, 8, 18, 9]
finally, the reason why you shouldn't use this for shuffling cards:
public static void main(String[] args) {
int N = 52;
String[] in = new String[N];
String[] out = new String[N];
for (int i = 0; i < N; ++i)
in[i] = Integer.toString(i);
for (int k = 0; k < 8; ++k)
{
perfectShuffle(in, out, N);
System.out.println(Arrays.asList(out));
String[] tmp = in;
in = out;
out = tmp;
}
}
output:
[0, 26, 1, 27, 2, 28, 3, 29, 4, 30, 5, 31, 6, 32, 7, 33, 8, 34, 9, 35, 10, 36, 11, 37, 12, 38, 13, 39, 14, 40, 15, 41, 16, 42, 17, 43, 18, 44, 19, 45, 20, 46, 21, 47, 22, 48, 23, 49, 24, 50, 25, 51]
[0, 13, 26, 39, 1, 14, 27, 40, 2, 15, 28, 41, 3, 16, 29, 42, 4, 17, 30, 43, 5, 18, 31, 44, 6, 19, 32, 45, 7, 20, 33, 46, 8, 21, 34, 47, 9, 22, 35, 48, 10, 23, 36, 49, 11, 24, 37, 50, 12, 25, 38, 51]
[0, 32, 13, 45, 26, 7, 39, 20, 1, 33, 14, 46, 27, 8, 40, 21, 2, 34, 15, 47, 28, 9, 41, 22, 3, 35, 16, 48, 29, 10, 42, 23, 4, 36, 17, 49, 30, 11, 43, 24, 5, 37, 18, 50, 31, 12, 44, 25, 6, 38, 19, 51]
[0, 16, 32, 48, 13, 29, 45, 10, 26, 42, 7, 23, 39, 4, 20, 36, 1, 17, 33, 49, 14, 30, 46, 11, 27, 43, 8, 24, 40, 5, 21, 37, 2, 18, 34, 50, 15, 31, 47, 12, 28, 44, 9, 25, 41, 6, 22, 38, 3, 19, 35, 51]
[0, 8, 16, 24, 32, 40, 48, 5, 13, 21, 29, 37, 45, 2, 10, 18, 26, 34, 42, 50, 7, 15, 23, 31, 39, 47, 4, 12, 20, 28, 36, 44, 1, 9, 17, 25, 33, 41, 49, 6, 14, 22, 30, 38, 46, 3, 11, 19, 27, 35, 43, 51]
[0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]