I tried to transform the column 'X' using values in column 'y' (this is a toy example, just to show using y
for transformation) before fitted by the last linear regression estimator. But why df['y']
is not passed to MyTransformer
?
from sklearn.base import TransformerMixin
class MyTransformer(TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
print(y)
return X + np.sum(y)
df = pd.DataFrame(np.array([[2, 3], [1, 5], [1, 1], [5, 6], [1, 2]]), columns=['X', 'y'])
pip = Pipeline([('my_transformer', MyTransformer()),
('sqrt', FunctionTransformer(np.sqrt, validate=False)),
('lr', LinearRegression())])
pip.fit(df[['X']], df['y'])
Running this script will raise an error at line return X + np.sum(y)
, looks like y is None
.