For a regex solution, there are two ways to go here:
- Find one invalid char anywhere in the string.
- Validate every char in the string.
Here is a script that implements both:
import re
topic_message = 'This topic is a-ok'
# Option 1: Invalidate one char in string.
re1 = re.compile(r"[<>/{}[\]~`]");
if re1.search(topic_message):
print ("RE1: Invalid char detected.")
else:
print ("RE1: No invalid char detected.")
# Option 2: Validate all chars in string.
re2 = re.compile(r"^[^<>/{}[\]~`]*$");
if re2.match(topic_message):
print ("RE2: All chars are valid.")
else:
print ("RE2: Not all chars are valid.")
Take your pick.
Note: the original regex erroneously has a right square bracket in the character class which needs to be escaped.
Benchmarks: After seeing gnibbler's interesting solution using set()
, I was curious to find out which of these methods would actually be fastest, so I decided to measure them. Here are the benchmark data and statements measured and the timeit
result values:
Test data:
r"""
TEST topic_message STRINGS:
ok: 'This topic is A-ok. This topic is A-ok.'
bad: 'This topic is <not>-ok. This topic is {not}-ok.'
MEASURED PYTHON STATEMENTS:
Method 1: 're1.search(topic_message)'
Method 2: 're2.match(topic_message)'
Method 3: 'set(invalid_chars).intersection(topic_message)'
"""
Results:
r"""
Seconds to perform 1000000 Ok-match/Bad-no-match loops:
Method Ok-time Bad-time
1 1.054 1.190
2 1.830 1.636
3 4.364 4.577
"""
The benchmark tests show that Option 1 is slightly faster than option 2 and both are much faster than the set().intersection()
method. This is true for strings which both match and don't match.