I have a data 200 cols and 30k rows. I have a missing data and I'd like to predict it to fill in the missing data. I want to predict None values and put the predicted data there. I want to split data by indexes, train model on Known data, predict Unknown values, join Known and Predicted values and return them back to data on exactly the same places.
P.S. Median, dropna and other methods are not interesting, just prediction of missed values.
df = {'First' : [30, 22, 18, 49, 22], 'Second' : [80, 28, 16, 56, 30], 'Third' : [14, None, None, 30, 27], 'Fourth' : [14, 85, 17, 22, 14], 'Fifth' : [22, 33, 45, 72, 11]}
df = pd.DataFrame(df, columns = ['First', 'Second', 'Third', 'Fourth'])
Same DF with all cols comleated by data.