Here is how your stuff should read:
#include <fstream>
#include <string>
#include <stdexcept>
struct SerializeTestStruct
{
char mCharVal;
unsigned int mIntVal;
void Serialize(::std::ostream &os);
static SerializeTestStruct Deserialize(::std::istream &is);
};
void SerializeTestStruct::Serialize(std::ostream &os)
{
if (os.good())
{
os.write((char*)&mCharVal, sizeof(mCharVal));
os.write((char*)&mIntVal, sizeof(mIntVal));
}
}
SerializeTestStruct SerializeTestStruct::Deserialize(std::istream &is)
{
SerializeTestStruct retval;
if (is.good())
{
is.read((char*)&retval.mCharVal, sizeof(retval.mCharVal));
is.read((char*)&retval.mIntVal, sizeof(retval.mIntVal));
}
if (is.fail()) {
throw ::std::runtime_error("failed to read full struct");
}
return retval;
}
int main(int argc, const char *argv[])
{
//ultra basic serialization test.
// setup
const ::std::string testFileName = "test.bin";
// write
{
SerializeTestStruct testStruct;
testStruct.mCharVal = 'y';
testStruct.mIntVal = 9;
::std::ofstream fileOut(testFileName.c_str());
fileOut.open(testFileName.c_str(),
std::ofstream::binary|std::ofstream::out);
fileOut.clear();
testStruct.Serialize(fileOut);
}
// read
{
::std::ifstream fileIn (testFileName.c_str(),
std::ifstream::in|std::ifstream::binary);
if (fileIn.is_open())
{
SerializeTestStruct testStruct = \
SerializeTestStruct::Deserialize(fileIn);
::std::cout << "testStruct.mCharVal == '" << testStruct.mCharVal
<< "' && testStruct.mIntVal == " << testStruct.mIntVal
<< '\n';
}
}
return 0;
}
Style issues:
- Don't use
new
to create things if you can help it. Stack allocated objects are usually what you want and significantly easier to manage than the arbitrary lifetime objects you allocate from the heap. If you do use new
, consider using a smart pointer type of some kind to help manage the lifetime for you.
- Serialization and deserialization code should be matched up so that they can be examined and altered together. This makes maintenance of such code much easier.
- Rely on C++ to clean things up for you with destructors, that's what they're for. This means making basic blocks containing parts of your code if it the scopes of the variables used is relatively confined.
- Don't needlessly use flags.
Mistakes...
- Don't use the
data
member function of ::std::string
.
- Using placement
new
and that memory block thing is really bad idea because it's ridiculously complex. And if you did use it, then you do not use array delete in the way you did. And lastly, it won't work anyway for a reason explained later.
- Do not use
ofstream
in the type taken by your Serialize
function as it is a derived class who's features you don't need. You should always use the most base class in a hierarchy that has the features you need unless you have a very specific reason not to. Serialize
works fine with the features of the base ostream
class, so use that type instead.
- The on-disk layout of your structure and the in memory layout do not match, so your placement new technique is doomed to fail. As a rule, if you have a
serialize
function, you need a matching deserialize
function.
Here is a further explanation of your memory layout issue. The structure, in memory, on an x86_64 based Linux box looks like this:
+------------+-----------+
|Byte number | contents |
+============+===========+
| 0 | 0x79 |
| | (aka 'y') |
+------------+-----------+
| 1 | padding |
+------------+-----------+
| 3 | padding |
+------------+-----------+
| 4 | padding |
+------------+-----------+
| 5 | 9 |
+------------+-----------+
| 6 | 0 |
+------------+-----------+
| 7 | 0 |
+------------+-----------+
| 8 | 0 |
+------------+-----------+
The contents of the padding
section are undefined, but generally 0
. It doesn't matter though because that space is never used and merely exists so that access to the following int
lies on an efficient 4-byte boundary.
The size of your structure on disk is 5 bytes, and is completely missing the padding sections. So that means when you read it into memory it won't line up properly with the in memory structure at all and accessing it is likely to cause some kind of horrible problem.
The first rule, if you need a serialize
function, you need a deserialize
function. Second rule, unless you really know exactly what you are doing, do not dump raw memory into a file. This will work just fine in many cases, but there are important cases in which it won't work. And unless you are aware of what does and doesn't work, and when it does or doesn't work, you will end up code that seems to work OK in certain test situations, but fails miserable when you try to use it in a real system.
My code still does dump memory into a file. And it should work as long as you read the result back on exactly the same architecture and platform with code compiled with the same version of the compiler as when you wrote it. As soon as one of those variables changes, all bets are off.