First, I think in your last statement, you meant to use df.name
instead of df.status
.
df_f = df.filter(df.status.isin(df_t.name)== False)
Second, even if you use df.name
, it still won't work.
Because it's mixing the columns (Column type) from two DataFrames, i.e. df_t
and df
in your final statement. I don't think this works in pyspark.
However, you can achieve the same effect using other methods.
If I understand correctly, you want to select 'A' and 'C' first through 'status' column, then select the rows excluding ['A', 'C']. The thing here is to extend the selection to the second row of 'A', which can be achieved by Window
. See below:
from pyspark.sql import functions as F
from pyspark.sql.window import Window
df = sqlContext.createDataFrame([( "A", "True"), ( "A", "False"), ( "B", "False"), ("C", "True")], ( "name", "status"))
df.registerTempTable("df")
# create an auxiliary column satisfying the condition
df = df.withColumn("flag", F.when(df['status']=="True", 1).otherwise(0))
df.show()
# extend the selection to other rows with the same 'name'
df = df.withColumn('flag', F.max(df['flag']).over(Window.partitionBy('name')))
df.show()
#filter is now easy
df_f = df.filter(df.flag==0)
df_f.show()