Given two sparse scipy matrices A, B
I want to compute the row-wise outer product.
I can do this with numpy in a number of ways. The easiest perhaps being
np.einsum('ij,ik->ijk', A, B).reshape(n, -1)
or
(A[:, :, np.newaxis] * B[:, np.newaxis, :]).reshape(n, -1)
where n
is the number of rows in A
and B
.
In my case, however, going through dense matrices eat up way too much RAM. The only option I have found is thus to use a python loop:
sp.sparse.vstack((ra.T@rb).reshape(1,-1) for ra, rb in zip(A,B)).tocsr()
While using less RAM, this is very slow.
My question is thus, is there a sparse (RAM efficient) way to take the row-wise outer product of two matrices, which keeps things vectorized?
(A similar question is numpy elementwise outer product with sparse matrices but all answers there go through dense matrices.)