I am trying to train a model where a shared feature extractor is used and then splited into n "heads" consisting of small layers to produce different outputs.
When I train the head "a" first everything works fine, but when I switch to head "b" python throws an InvalidArgumentError
from tensorflow. It the same when I start with head "b" and then train head "a".
I tried to follow different approaches found on stackoverflow like this one but it didn't work.
I am building my model as follows
alphaLeaky=0.3
inputs =Input(shape=(state_shape[0],state_shape[1],state_shape[2]))
outputs=ZeroPadding2D(padding=(1,1))(inputs)
outputs=LocallyConnected2D(1, (6,6), activation='linear', padding='valid')(outputs)
outputs=Flatten()(outputs)
outputs=Dense(768,kernel_initializer='lecun_uniform',bias_initializer='zeros')(outputs)
outputs=advanced_activations.LeakyReLU(alpha=alphaLeaky)(outputs)
outputs=Dense(512,kernel_initializer='lecun_uniform',bias_initializer='zeros')(outputs)
outputs=advanced_activations.LeakyReLU(alpha=alphaLeaky)(outputs)
outputs1=Dense(256,kernel_initializer='lecun_uniform',bias_initializer='zeros')(outputs)
outputs1=advanced_activations.LeakyReLU(alpha=alphaLeaky)(outputs1)
outputs1=Dense(action_number,kernel_initializer='lecun_uniform',bias_initializer='zeros')(outputs1)
outputs1=Activation('linear')(outputs1)
outputs2=Dense(256,kernel_initializer='lecun_uniform',bias_initializer='zeros')(outputs)
outputs2=advanced_activations.LeakyReLU(alpha=alphaLeaky)(outputs2)
outputs2=Dense(action_number,kernel_initializer='lecun_uniform',bias_initializer='zeros')(outputs2)
outputs2=Activation('linear')(outputs2)
outputs3=Dense(256,kernel_initializer='lecun_uniform',bias_initializer='zeros')(outputs)
outputs3=advanced_activations.LeakyReLU(alpha=alphaLeaky)(outputs3)
outputs3=Dense(action_number,kernel_initializer='lecun_uniform',bias_initializer='zeros')(outputs3)
outputs3=Activation('linear')(outputs3)
model1= Model(inputs=inputs, outputs=outputs1)
model2= Model(inputs=inputs, outputs=outputs2)
model3= Model(inputs=inputs, outputs=outputs3)
model1.compile(loss='mse', optimizer=Adamax(lr=PAS_INITIAL, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model2.compile(loss='mse', optimizer=Adamax(lr=PAS_INITIAL, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model3.compile(loss='mse', optimizer=Adamax(lr=PAS_INITIAL, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
And then I train them using the fit method.
if I run model1.fit(...)
, for example, it works but then, when I run model2.fit(...)
or model3.fit(...)
, I got an error message :
W tensorflow/core/framework/op_kernel.cc:993] Invalid argument: You must feed a value for placeholder tensor 'activation_1_target' with dtype float
[[Node: activation_1_target = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/gpu:0"]()]]
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'activation_1_target' with dtype float
[[Node: activation_1_target = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/gpu:0"]()]]
[[Node: dense_5/bias/read/_1075 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_60_dense_5/bias/read", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op 'activation_1_target', defined at:
File "main.py", line 100, in <module>
agent.init_brain()
File "/dds/work/DQL/dql_last_version/8th_code_multi/agent_per.py", line 225, in init_brain
self.brain = Brain_2D(self.state_shape,self.action_number)
File "/dds/work/DQL/dql_last_version/8th_code_multi/brain.py", line 141, in __init__
Brain.__init__(self, action_number)
File "/dds/work/DQL/dql_last_version/8th_code_multi/brain.py", line 20, in __init__
self.models, self.full_model = self._create_model()
File "/dds/work/DQL/dql_last_version/8th_code_multi/brain.py", line 216, in _create_model
neuralNet1.compile(loss='mse', optimizer=Adamax(lr=PAS_INITIAL, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0))
File "/dds/miniconda/envs/dds/lib/python3.5/site-packages/keras/engine/training.py", line 755, in compile
dtype=K.dtype(self.outputs[i]))
File "/dds/miniconda/envs/dds/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 497, in placeholder
x = tf.placeholder(dtype, shape=shape, name=name)
File "/dds/miniconda/envs/dds/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py", line 1502, in placeholder
name=name)
File "/dds/miniconda/envs/dds/lib/python3.5/site-packages/tensorflow/python/ops/gen_array_ops.py", line 2149, in _placeholder
name=name)
File "/dds/miniconda/envs/dds/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 763, in apply_op
op_def=op_def)
File "/dds/miniconda/envs/dds/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2327, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/dds/miniconda/envs/dds/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1226, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'activation_1_target' with dtype float
[[Node: activation_1_target = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/gpu:0"]()]]
[[Node: dense_5/bias/read/_1075 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_60_dense_5/bias/read", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
I want to optimize the weights only on the head that I chose, but it seems that once some inputs have taken a path through the network, it is waiting for me to pass again trough the same head. Even if I want to train the other weights.
I thought of building only one model with several outputs
model= Model(inputs=inputs, outputs=[outputs1,outputs2,outputs3,outputs4])
but I want each head to be train on a different batch of data (I am working on a reinforcement learning project).
Thank you !