I am currently experimenting with generative adversarial networks in Keras. As proposed in this paper, I want to use the historical averaging loss function. Meaning that I want to penalize the change of the network weights. I am not sure how to implement it in a clever way.
I was implementing the custom loss function according to the answer to this post.
def historical_averaging_wrapper(current_weights, prev_weights):
def historical_averaging(y_true, y_pred):
diff = 0
for i in range(len(current_weights)):
diff += abs(np.sum(current_weights[i]) + np.sum(prev_weights[i]))
return K.binary_crossentropy(y_true, y_pred) + diff
return historical_averaging
The weights of the network are penalized, and the weights are changing after each batch of data.
My first idea was to update the loss function after each batch. Roughly like this:
prev_weights = model.get_weights()
for i in range(len(data)/batch_len):
current_weights = model.get_weights()
model.compile(loss=historical_averaging_wrapper(current_weights, prev_weights), optimizer='adam')
model.fit(training_data[i*batch_size:(i+1)*batch_size], training_labels[i*batch_size:(i+1)*batch_size], epochs=1, batch_size=batch_size)
prev_weights = current_weights
Is this reasonable? That approach seems to be a bit "messy" in my opinion. Is there another possibility to do this in a "smarter" way? Like maybe updating the loss function in a data generator and use fit_generator()? Thanks in advance.