Have a dataframe: need to convert a timestamp column to datetime
readable = datetime.utcfromtimestamp(1551348672).strftime('%d-%m-%Y
%H:%M:%S')
print(readable) 28-02-2019 10:11:12
This is ok for one value but I need to have this result for a dataframe column named time_q
data_pre["time_q"] = data_pre["time_q"].map(lambda x:
datetime.utcfromtimestamp(str(x)).strftime('%d-%m-%Y %H:%M:%S'))
Traceback (most recent call last)
<ipython-input-65-7f8191ae6c70> in <module>
----> 1 data_pre["time_q"] = data_pre["time_q"].map(lambda x:
datetime.utcfromtimestamp(str(x)).strftime('%d-%m-%Y %H:%M:%S'))
~\Anaconda3\lib\site-packages\pandas\core\series.py in map(self, arg,
na_action)
2996 """
2997 new_values = super(Series, self)._map_values(
-> 2998 arg, na_action=na_action)
2999 return self._constructor(new_values,
3000
index=self.index).__finalize__(self)
~\Anaconda3\lib\site-packages\pandas\core\base.py in _map_values(self,
mapper, na_action)
1002
1003 # mapper is a function
-> 1004 new_values = map_f(values, mapper)
1005
1006 return new_values
pandas/_libs/src\inference.pyx in pandas._libs.lib.map_infer()
<ipython-input-65-7f8191ae6c70> in <lambda>(x)
----> 1 data_pre["time_q"] = data_pre["time_q"].map(lambda x:
datetime.utcfromtimestamp(str(x)).strftime('%d-%m-%Y %H:%M:%S'))
TypeError: an integer is required (got type str)
I expect all the values of the columm time_q to be for example 28-02-2019 10:11:12 and others values with this format; instead i have an error message